BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36065078)

  • 1. Potential issues specific to cytotoxicity tests of cellulose nanofibrils.
    Moriyama A; Ogura I; Fujita K
    J Appl Toxicol; 2023 Jan; 43(1):195-207. PubMed ID: 36065078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils.
    Aimonen K; Imani M; Hartikainen M; Suhonen S; Vanhala E; Moreno C; Rojas OJ; Norppa H; Catalán J
    Part Fibre Toxicol; 2022 Mar; 19(1):19. PubMed ID: 35296350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers.
    Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H
    NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells.
    Nordli HR; Chinga-Carrasco G; Rokstad AM; Pukstad B
    Carbohydr Polym; 2016 Oct; 150():65-73. PubMed ID: 27312614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of preservatives and evaluation of sterilized cellulose nanofibers for toxicity studies.
    Sai T; Maru J; Obara S; Endoh S; Kajihara H; Fujita K
    J Occup Health; 2020 Jan; 62(1):e12176. PubMed ID: 33159502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Surface Modification on the Pulmonary and Systemic Toxicity of Cellulose Nanofibrils.
    Aimonen K; Hartikainen M; Imani M; Suhonen S; Vales G; Moreno C; Saarelainen H; Siivola K; Vanhala E; Wolff H; Rojas OJ; Norppa H; Catalán J
    Biomacromolecules; 2022 Jul; 23(7):2752-2766. PubMed ID: 35680128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae.
    Munk M; Brandão HM; Nowak S; Mouton L; Gern JC; Guimaraes AS; Yéprémian C; Couté A; Raposo NR; Marconcini JM; Brayner R
    Ecotoxicol Environ Saf; 2015 Dec; 122():399-405. PubMed ID: 26363983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contaminant microorganisms in the
    Horie M; Fujita K; Endoh S; Sugino S; Maru J; Moriyama A; Ogura I
    Toxicol Mech Methods; 2023 Nov; 33(9):741-754. PubMed ID: 37496379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment.
    Tibolla H; Pelissari FM; Martins JT; Lanzoni EM; Vicente AA; Menegalli FC; Cunha RL
    Carbohydr Polym; 2019 Mar; 207():169-179. PubMed ID: 30599996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils.
    Mattos BD; Tardy BL; Rojas OJ
    Biomacromolecules; 2019 Jul; 20(7):2657-2665. PubMed ID: 31194520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment.
    Kumari P; Pathak G; Gupta R; Sharma D; Meena A
    Daru; 2019 Dec; 27(2):683-693. PubMed ID: 31654377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary toxicity and RNA sequencing analyses of mouse in response to exposure to cellulose nanofibrils.
    Song LY; Wu YZ; Pei XX; Li R; Chen HT; Sun XZ
    Inhal Toxicol; 2020 Aug; 32(9-10):388-401. PubMed ID: 33043732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect.
    Lopes VR; Sanchez-Martinez C; Strømme M; Ferraz N
    Part Fibre Toxicol; 2017 Jan; 14(1):1. PubMed ID: 28069023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of residual pectin composition and content on the properties of cellulose nanofibrils from ramie fibers.
    Yu W; Yi Y; Wang H; Yang Y; Xing C; Zeng L; Tang J; Tan Z
    Carbohydr Polym; 2022 Dec; 298():120112. PubMed ID: 36241286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consolidation of cellulose nanofibrils with lignosulphonate bio-waste into excellent flame retardant and UV blocking membranes.
    Jančič U; Bračič M; Ojstršek A; Božič M; Mohan T; Gorgieva S
    Carbohydr Polym; 2021 Jan; 251():117126. PubMed ID: 33142658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing Cellulose Nanofibrils for Stabilization of Fluid Interfaces.
    Bertsch P; Arcari M; Geue T; Mezzenga R; Nyström G; Fischer P
    Biomacromolecules; 2019 Dec; 20(12):4574-4580. PubMed ID: 31714073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents.
    Lu Y; Tao P; Zhang N; Nie S
    Carbohydr Polym; 2020 Oct; 245():116463. PubMed ID: 32718602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.