These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3606526)

  • 21. Protein phosphorylation and associative learning in Hermissenda.
    Neary JT; Alkon DL
    Acta Biochim Biophys Hung; 1986; 21(3):159-76. PubMed ID: 2432746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regenerative changes of voltage-dependent Ca2+ and K+ currents encode a learned stimulus association.
    Alkon DL
    J Physiol (Paris); 1982-1983; 78(8):700-6. PubMed ID: 7187444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Primary changes of voltage responses during retention of associative learning.
    West A; Barnes E; Alkon DL
    J Neurophysiol; 1982 Nov; 48(5):1243-55. PubMed ID: 6816909
    [No Abstract]   [Full Text] [Related]  

  • 24. Voltage-dependent calcium and potassium ion conductances: a contingency mechanism for an associative learning model.
    Alkon DL
    Science; 1979 Aug; 205(4408):810-6. PubMed ID: 223244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subcellular, cellular, and circuit mechanisms underlying classical conditioning in Hermissenda crassicornis.
    Blackwell KT
    Anat Rec B New Anat; 2006 Jan; 289(1):25-37. PubMed ID: 16437555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classical conditioning of Hermissenda: origin of a new response.
    Lederhendler II; Gart S; Alkon DL
    J Neurosci; 1986 May; 6(5):1325-31. PubMed ID: 3711982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential changes of potassium currents in Hermissenda type B photoreceptor during early stages of classical conditioning.
    Lederhendler II; Collin C; Alkon DL
    Neurosci Lett; 1990 Mar; 110(1-2):28-33. PubMed ID: 2325887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implicating causal relations between cellular function and learning behavior.
    Lederhendler I; Alkon DL
    Behav Neurosci; 1986 Dec; 100(6):833-8. PubMed ID: 3545259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Associative learning in a network model of Hermissenda crassicornis. I. Theory.
    Werness SA; Fay SD; Blackwell KT; Vogl TP; Alkon DL
    Biol Cybern; 1992; 68(2):125-33. PubMed ID: 1486137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of the initiation of locomotion in Hermissenda: behavioral analysis.
    Crow T; Offenbach N
    Brain Res; 1983 Jul; 271(2):301-10. PubMed ID: 6616178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis.
    Blackwell KT; Alkon DL
    Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pavlovian conditioning of distinct components of Hermissenda's responses to rotation.
    Matzel LD; Schreurs BG; Alkon DL
    Behav Neural Biol; 1990 Sep; 54(2):131-45. PubMed ID: 2241759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of short-term associative memory by calcium-dependent protein kinase.
    Matzel LD; Lederhendler II; Alkon DL
    J Neurosci; 1990 Jul; 10(7):2300-7. PubMed ID: 2376776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Associative learning acquisition and retention depends on developmental stage in Lymnaea stagnalis.
    Ono M; Kawai R; Horikoshi T; Yasuoka T; Sakakibara M
    Neurobiol Learn Mem; 2002 Jul; 78(1):53-64. PubMed ID: 12071667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-light potentiation at type B to A photoreceptor connections in Hermissenda.
    Schultz LM; Butson CR; Clark GA
    Neurobiol Learn Mem; 2001 Jul; 76(1):7-32. PubMed ID: 11525254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural correlates of associative training in Hermissenda.
    Alkon DL
    J Gen Physiol; 1975 Jan; 65(1):46-56. PubMed ID: 1110353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Higher-order associative processing in Hermissenda suggests multiple sites of neuronal modulation.
    Rogers RF; Matzel LD
    Learn Mem; 1996; 2(6):279-98. PubMed ID: 10467580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serotonin modulation of Hermissenda type B photoreceptor light responses and ionic currents: implications for mechanisms underlying associative learning.
    Farley J; Wu R
    Brain Res Bull; 1989 Feb; 22(2):335-51. PubMed ID: 2468402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specific high molecular weight mRNAs induced by associative learning in Hermissenda.
    Nelson TJ; Alkon DL
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):269-73. PubMed ID: 2296586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variations in learning reflect individual differences in sensory function and synaptic integration.
    Matzel LD; Muzzio IA; Talk AC
    Behav Neurosci; 1996 Oct; 110(5):1084-95. PubMed ID: 8919011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.