BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36065479)

  • 41. Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network?
    Gambette P; van Iersel L; Kelk S; Pardi F; Scornavacca C
    Bull Math Biol; 2016 Sep; 78(9):1773-1795. PubMed ID: 27659024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beyond pairwise distances: neighbor-joining with phylogenetic diversity estimates.
    Levy D; Yoshida R; Pachter L
    Mol Biol Evol; 2006 Mar; 23(3):491-8. PubMed ID: 16280538
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates.
    Kuhner MK; Felsenstein J
    Mol Biol Evol; 1994 May; 11(3):459-68. PubMed ID: 8015439
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic analysis.
    Smith GJ; Bahl J; Vijaykrishna D
    Methods Mol Biol; 2012; 865():207-27. PubMed ID: 22528162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neighbor-net: an agglomerative method for the construction of phylogenetic networks.
    Bryant D; Moulton V
    Mol Biol Evol; 2004 Feb; 21(2):255-65. PubMed ID: 14660700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neighbor-joining uses the optimal weight for net divergence.
    Charleston MA; Hendy MD; Penny D
    Mol Phylogenet Evol; 1993 Mar; 2(1):6-12. PubMed ID: 8081548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Getting a tree fast: Neighbor Joining, FastME, and distance-based methods.
    Desper R; Gascuel O
    Curr Protoc Bioinformatics; 2006 Oct; Chapter 6():Unit 6.3. PubMed ID: 18428768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The neighbor-joining method: a new method for reconstructing phylogenetic trees.
    Saitou N; Nei M
    Mol Biol Evol; 1987 Jul; 4(4):406-25. PubMed ID: 3447015
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FastJoin, an improved neighbor-joining algorithm.
    Wang J; Guo MZ; Xing LL
    Genet Mol Res; 2012 Jul; 11(3):1909-22. PubMed ID: 22869546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small.
    Nei M; Kumar S; Takahashi K
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12390-7. PubMed ID: 9770497
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A topological transformation in evolutionary tree search methods based on maximum likelihood combining p-ECR and neighbor joining.
    Guo MZ; Li JF; Liu Y
    BMC Bioinformatics; 2008 May; 9 Suppl 6(Suppl 6):S4. PubMed ID: 18541057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program.
    Lefort V; Desper R; Gascuel O
    Mol Biol Evol; 2015 Oct; 32(10):2798-800. PubMed ID: 26130081
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species.
    Kaltenboeck B; Kousoulas KG; Storz J
    J Bacteriol; 1993 Jan; 175(2):487-502. PubMed ID: 8419295
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unguided species delimitation using DNA sequence data from multiple Loci.
    Yang Z; Rannala B
    Mol Biol Evol; 2014 Dec; 31(12):3125-35. PubMed ID: 25274273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling heterotachy in phylogenetic inference by reversible-jump Markov chain Monte Carlo.
    Pagel M; Meade A
    Philos Trans R Soc Lond B Biol Sci; 2008 Dec; 363(1512):3955-64. PubMed ID: 18852097
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficiencies of the NJp, Maximum Likelihood, and Bayesian Methods of Phylogenetic Construction for Compositional and Noncompositional Genes.
    Yoshida R; Nei M
    Mol Biol Evol; 2016 Jun; 33(6):1618-24. PubMed ID: 26929244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accurate and robust phylogeny estimation based on profile distances: a study of the Chlorophyceae (Chlorophyta).
    Müller T; Rahmann S; Dandekar T; Wolf M
    BMC Evol Biol; 2004 Jun; 4():20. PubMed ID: 15222898
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maximum similarity: a new formulation of phylogenetic reconstruction.
    Huang X; Vingron M
    J Comput Biol; 2009 Jul; 16(7):887-96. PubMed ID: 19580518
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of protein distance measures and tree-building methods for phylogenetic tree reconstruction.
    Hollich V; Milchert L; Arvestad L; Sonnhammer EL
    Mol Biol Evol; 2005 Nov; 22(11):2257-64. PubMed ID: 16049194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. IDXL: Species Tree Inference Using Internode Distance and Excess Gene Leaf Count.
    Bhattacharyya S; Mukherjee J
    J Mol Evol; 2017 Aug; 85(1-2):57-78. PubMed ID: 28835989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.