BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36065829)

  • 1. Development of Base Editors for Simultaneously Editing Multiple Loci in
    Tian K; Hong X; Guo M; Li Y; Wu H; Caiyin Q; Qiao J
    ACS Synth Biol; 2022 Nov; 11(11):3644-3656. PubMed ID: 36065829
    [No Abstract]   [Full Text] [Related]  

  • 2. Single-plasmid systems based on CRISPR-Cas9 for gene editing in Lactococcus lactis.
    Song X; Liu L; Liu XX; Xiong ZQ; Xie CL; Wang SJ; Ai LZ
    J Dairy Sci; 2021 Oct; 104(10):10576-10585. PubMed ID: 34275631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST.
    Tong Y; Whitford CM; Robertsen HL; Blin K; Jørgensen TS; Klitgaard AK; Gren T; Jiang X; Weber T; Lee SY
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20366-20375. PubMed ID: 31548381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a food-grade gene editing system based on CRISPR-Cas9 and its application in Lactococcus lactis NZ9000.
    Zhou Y; Song F; Yang H; Li D; Zhang N; Huang K; He X; Wang M; Tian H; Li C
    Biotechnol Lett; 2023 Aug; 45(8):955-966. PubMed ID: 37266879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
    van der Els S; James JK; Kleerebezem M; Bron PA
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29453254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous multiplex genome loci editing of
    Zhang Y; Zheng Y; Hu Q; Hu Z; Sun J; Cheng P; Rao X; Jiang XR
    Synth Syst Biotechnol; 2024 Sep; 9(3):586-593. PubMed ID: 38720820
    [No Abstract]   [Full Text] [Related]  

  • 9. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces.
    Zhao Y; Tian J; Zheng G; Chen J; Sun C; Yang Z; Zimin AA; Jiang W; Deng Z; Wang Z; Lu Y
    Sci China Life Sci; 2020 Jul; 63(7):1053-1062. PubMed ID: 31872379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.
    Bae SJ; Park BG; Kim BG; Hahn JS
    Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis.
    Berlec A; Škrlec K; Kocjan J; Olenic M; Štrukelj B
    Sci Rep; 2018 Jan; 8(1):1009. PubMed ID: 29343791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid and versatile tool for genomic engineering in Lactococcus lactis.
    Guo T; Xin Y; Zhang Y; Gu X; Kong J
    Microb Cell Fact; 2019 Jan; 18(1):22. PubMed ID: 30704485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable Single and Multiplex Base-Editing in
    Li Y; Ma S; Sun L; Zhang T; Chang J; Lu W; Chen X; Liu Y; Wang X; Shi R; Zhao P; Xia Q
    G3 (Bethesda); 2018 May; 8(5):1701-1709. PubMed ID: 29555822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 17. Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis.
    Xiong ZQ; Wei YY; Kong LH; Song X; Yi HX; Ai LZ
    J Dairy Sci; 2020 Jan; 103(1):161-165. PubMed ID: 31733872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Software-based screening for efficient sgRNAs in Lactococcus lactis.
    Wang H; Ai L; Xia Y; Wang G; Xiong Z; Song X
    J Sci Food Agric; 2024 Jan; 104(2):1200-1206. PubMed ID: 37647419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion.
    Liu Z; Shan H; Chen S; Chen M; Zhang Q; Lai L; Li Z
    FASEB J; 2019 Aug; 33(8):9210-9219. PubMed ID: 31071267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems Analysis of Highly Multiplexed CRISPR-Base Editing in Streptomycetes.
    Whitford CM; Gren T; Palazzotto E; Lee SY; Tong Y; Weber T
    ACS Synth Biol; 2023 Aug; 12(8):2353-2366. PubMed ID: 37402223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.