BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36065829)

  • 21. The ScCas9
    Liu T; Zeng D; Zheng Z; Lin Z; Xue Y; Li T; Xie X; Ma G; Liu YG; Zhu Q
    J Integr Plant Biol; 2021 Sep; 63(9):1611-1619. PubMed ID: 34411422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum.
    Wang Y; Liu Y; Li J; Yang Y; Ni X; Cheng H; Huang T; Guo Y; Ma H; Zheng P; Wang M; Sun J; Ma Y
    Biotechnol Bioeng; 2019 Nov; 116(11):3016-3029. PubMed ID: 31317533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic Manipulation of MRSA Using CRISPR/Cas9 Technology.
    Chen W; Ji Q
    Methods Mol Biol; 2020; 2069():113-124. PubMed ID: 31523770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.
    Huang TP; Zhao KT; Miller SM; Gaudelli NM; Oakes BL; Fellmann C; Savage DF; Liu DR
    Nat Biotechnol; 2019 Jun; 37(6):626-631. PubMed ID: 31110355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in
    Shelake RM; Pramanik D; Kim JY
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system.
    Qin L; Li J; Wang Q; Xu Z; Sun L; Alariqi M; Manghwar H; Wang G; Li B; Ding X; Rui H; Huang H; Lu T; Lindsey K; Daniell H; Zhang X; Jin S
    Plant Biotechnol J; 2020 Jan; 18(1):45-56. PubMed ID: 31116473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR base editors: genome editing without double-stranded breaks.
    Eid A; Alshareef S; Mahfouz MM
    Biochem J; 2018 Jun; 475(11):1955-1964. PubMed ID: 29891532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture].
    Yu C; Mo J; Zhao X; Li G; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3071-3087. PubMed ID: 34622618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a DNA double-strand break-free base editing tool in
    Deng C; Lv X; Li J; Liu Y; Du G; Liu L
    Metab Eng Commun; 2020 Dec; 11():e00135. PubMed ID: 32577397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Programmable base editing in zebrafish using a modified CRISPR-Cas9 system.
    Qin W; Lu X; Lin S
    Methods; 2018 Nov; 150():19-23. PubMed ID: 30076894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in
    Zhang Y; Yun K; Huang H; Tu R; Hua E; Wang M
    ACS Synth Biol; 2021 May; 10(5):1053-1063. PubMed ID: 33720688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New Strategies to Overcome Present CRISPR/Cas9 Limitations in Apple and Pear: Efficient Dechimerization and Base Editing.
    Malabarba J; Chevreau E; Dousset N; Veillet F; Moizan J; Vergne E
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation.
    Yu H; Wu Z; Chen X; Ji Q; Tao S
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32963098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Base editing with a Cpf1-cytidine deaminase fusion.
    Li X; Wang Y; Liu Y; Yang B; Wang X; Wei J; Lu Z; Zhang Y; Wu J; Huang X; Yang L; Chen J
    Nat Biotechnol; 2018 Apr; 36(4):324-327. PubMed ID: 29553573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Base Editing in Viral Genome Based on Bacterial Artificial Chromosome Using a Cas9-Cytidine Deaminase Fused Protein.
    Zheng K; Jiang FF; Su L; Wang X; Chen YX; Chen HC; Liu ZF
    Virol Sin; 2020 Apr; 35(2):191-199. PubMed ID: 31792738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.