These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36066243)

  • 41. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ice growth in supercooled solutions of a biological "antifreeze", AFGP 1-5: an explanation in terms of adsorption rate for the concentration dependence of the freezing point.
    Knight CA; DeVries AL
    Phys Chem Chem Phys; 2009 Jul; 11(27):5749-61. PubMed ID: 19842493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of ice nucleation: freezing and antifreeze strategies.
    Zhang Z; Liu XY
    Chem Soc Rev; 2018 Sep; 47(18):7116-7139. PubMed ID: 30137078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The migration law of magnesium ions during freezing and melting processes.
    Yan Z; Tongshuai L; Yuanqing T; Wanli Z; Fangyun R; Tongguo Z; Yucan L
    Environ Sci Pollut Res Int; 2022 Apr; 29(18):26675-26687. PubMed ID: 34855173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supercooling-Promoting (Anti-ice Nucleation) Substances.
    Fujikawa S; Kuwabara C; Kasuga J; Arakawa K
    Adv Exp Med Biol; 2018; 1081():289-320. PubMed ID: 30288716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air-ice interface at low temperatures.
    Ray D; Malongwe JK; Klán P
    Environ Sci Technol; 2013 Jul; 47(13):6773-80. PubMed ID: 23427835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Does hydrophilicity of carbon particles improve their ice nucleation ability?
    Lupi L; Molinero V
    J Phys Chem A; 2014 Sep; 118(35):7330-7. PubMed ID: 24533525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reaction Coordinate for Ice Crystallization on a Soft Surface.
    Lupi L; Hanscam R; Qiu Y; Molinero V
    J Phys Chem Lett; 2017 Sep; 8(17):4201-4205. PubMed ID: 28823159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellulose Nanocrystals Facilitate Needle-like Ice Crystal Growth and Modulate Molecular Targeted Ice Crystal Nucleation.
    Hou Y; Sun X; Dou M; Lu C; Liu J; Rao W
    Nano Lett; 2021 Jun; 21(11):4868-4877. PubMed ID: 33819045
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thiol-disulfide exchange in peptides derived from human growth hormone during lyophilization and storage in the solid state.
    Chandrasekhar S; Topp EM
    J Pharm Sci; 2015 Apr; 104(4):1291-302. PubMed ID: 25631887
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How nanoscale surface steps promote ice growth on feldspar: microscopy observation of morphology-enhanced condensation and freezing.
    Friddle RW; Thürmer K
    Nanoscale; 2019 Nov; 11(44):21147-21154. PubMed ID: 31663582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mercury distribution and transport across the ocean-sea-ice-atmosphere interface in the Arctic Ocean.
    Chaulk A; Stern GA; Armstrong D; Barber DG; Wang F
    Environ Sci Technol; 2011 Mar; 45(5):1866-72. PubMed ID: 21288021
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces.
    Charpentier TV; Neville A; Millner P; Hewson RW; Morina A
    J Colloid Interface Sci; 2013 Mar; 394():539-44. PubMed ID: 23245630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Can Ice-Like Structures Form on Non-Ice-Like Substrates? The Example of the K-feldspar Microcline.
    Pedevilla P; Cox SJ; Slater B; Michaelides A
    J Phys Chem C Nanomater Interfaces; 2016 Mar; 120(12):6704-6713. PubMed ID: 27917255
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular dynamics study on the role of solvation water in the adsorption of hyperactive AFP to the ice surface.
    Grabowska J; Kuffel A; Zielkiewicz J
    Phys Chem Chem Phys; 2018 Oct; 20(39):25365-25376. PubMed ID: 30260360
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Molecular Mechanism of Ice Nucleation on Model AgI Surfaces.
    Zielke SA; Bertram AK; Patey GN
    J Phys Chem B; 2015 Jul; 119(29):9049-55. PubMed ID: 25255062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Specific Ion-Protein Interactions Influence Bacterial Ice Nucleation.
    Schwidetzky R; Lukas M; YazdanYar A; Kunert AT; Pöschl U; Domke KF; Fröhlich-Nowoisky J; Bonn M; Koop T; Nagata Y; Meister K
    Chemistry; 2021 May; 27(26):7402-7407. PubMed ID: 33464680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f.
    Shields AL; Barnes R; Agol E; Charnay B; Bitz C; Meadows VS
    Astrobiology; 2016 Jun; 16(6):443-64. PubMed ID: 27176715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.
    Qiu Y; Odendahl N; Hudait A; Mason R; Bertram AK; Paesani F; DeMott PJ; Molinero V
    J Am Chem Soc; 2017 Mar; 139(8):3052-3064. PubMed ID: 28135412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.
    Shields AL; Meadows VS; Bitz CM; Pierrehumbert RT; Joshi MM; Robinson TD
    Astrobiology; 2013 Aug; 13(8):715-39. PubMed ID: 23855332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.