These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36066500)

  • 21. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.
    da Silva ES; Gómez-Vallejo V; Baz Z; Llop J; López-Gallego F
    Chemistry; 2016 Sep; 22(38):13619-26. PubMed ID: 27515007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A high catalytic efficiency and chemotolerant formate dehydrogenase from Bacillus simplex.
    Boonkumkrong R; Chunthaboon P; Munkajohnpong P; Watthaisong P; Pimviriyakul P; Maenpuen S; Chaiyen P; Tinikul R
    Biotechnol J; 2024 Jan; 19(1):e2300330. PubMed ID: 38180313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes.
    Galkin A; Kulakova L; Yoshimura T; Soda K; Esaki N
    Appl Environ Microbiol; 1997 Dec; 63(12):4651-6. PubMed ID: 9406383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate.
    Liu A; Feng R; Liang B
    Enzyme Microb Technol; 2016 Sep; 91():59-65. PubMed ID: 27444330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-step biocatalytic strategies for chiral amino alcohol synthesis.
    Villegas-Torres MF; Martinez-Torres RJ; Cázares-Körner A; Hailes H; Baganz F; Ward J
    Enzyme Microb Technol; 2015 Dec; 81():23-30. PubMed ID: 26453469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioinspired genetic engineering of supramolecular assembled formate dehydrogenase with enhanced biocatalysis activities.
    Jiang W; Yang R; Lin P; Hong W; Fang B
    J Biotechnol; 2019 Feb; 292():50-56. PubMed ID: 30690097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological valorization of lignin-derived vanillin to vanillylamine by recombinant E. coli expressing ω-transaminase and alanine dehydrogenase in a petroleum ether-water system.
    Li L; Ma C; Chai H; He YC
    Bioresour Technol; 2023 Oct; 385():129453. PubMed ID: 37406835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Switching the Cofactor Preference of Formate Dehydrogenase to Develop an NADPH-Dependent Biocatalytic System for Synthesizing Chiral Amino Acids.
    Cheng F; Wei L; Wang CJ; Liang XH; Xu YQ; Xue YP; Zheng YG
    J Agric Food Chem; 2023 Jun; 71(23):9009-9019. PubMed ID: 37265255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans.
    de Bok FA; Hagedoorn PL; Silva PJ; Hagen WR; Schiltz E; Fritsche K; Stams AJ
    Eur J Biochem; 2003 Jun; 270(11):2476-85. PubMed ID: 12755703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Development of Leucine Dehydrogenase and Formate Dehydrogenase Bifunctional Enzyme Cascade Improves the Biosynthsis of L-tert-Leucine.
    Lu J; Zhang Y; Sun D; Jiang W; Wang S; Fang B
    Appl Biochem Biotechnol; 2016 Nov; 180(6):1180-1195. PubMed ID: 27387958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO
    Nielsen CF; Lange L; Meyer AS
    Biotechnol Adv; 2019 Nov; 37(7):107408. PubMed ID: 31200015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures of the apo and holo forms of formate dehydrogenase from the bacterium Moraxella sp. C-1: towards understanding the mechanism of the closure of the interdomain cleft.
    Shabalin IG; Filippova EV; Polyakov KM; Sadykhov EG; Safonova TN; Tikhonova TV; Tishkov VI; Popov VO
    Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1315-25. PubMed ID: 19966418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced catalytic activity of recombinant transaminase by molecular modification to improve L-phosphinothricin production.
    Jin LQ; Shentu JK; Liu HL; Shao TC; Liu ZQ; Xue YP; Zheng YG
    J Biotechnol; 2022 Jan; 343():7-14. PubMed ID: 34763007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO
    Tian Y; Zhou Y; Zong Y; Li J; Yang N; Zhang M; Guo Z; Song H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34795-34805. PubMed ID: 32805792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas.
    Choe H; Joo JC; Cho DH; Kim MH; Lee SH; Jung KD; Kim YH
    PLoS One; 2014; 9(7):e103111. PubMed ID: 25061666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase.
    Graentzdoerffer A; Rauh D; Pich A; Andreesen JR
    Arch Microbiol; 2003; 179(2):116-30. PubMed ID: 12560990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer.
    Khangulov SV; Gladyshev VN; Dismukes GC; Stadtman TC
    Biochemistry; 1998 Mar; 37(10):3518-28. PubMed ID: 9521673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis.
    Gladyshev VN; Boyington JC; Khangulov SV; Grahame DA; Stadtman TC; Sun PD
    J Biol Chem; 1996 Apr; 271(14):8095-100. PubMed ID: 8626495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases.
    Bulut H; Valjakka J; Yuksel B; Yilmazer B; Turunen O; Binay B
    Protein J; 2020 Oct; 39(5):519-530. PubMed ID: 33043425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.