These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 36066743)
1. 3D printing of alginate/thymoquinone/halloysite nanotube bio-scaffolds for cartilage repairs: experimental and numerical study. Zineh BR; Roshangar L; Meshgi S; Shabgard M Med Biol Eng Comput; 2022 Nov; 60(11):3069-3080. PubMed ID: 36066743 [TBL] [Abstract][Full Text] [Related]
2. Experimental and numerical study on the performance of printed alginate/hyaluronic acid/halloysite nanotube/polyvinylidene fluoride bio-scaffolds. Roushangar Zineh B; Shabgard MR; Roshangar L; Jahani K J Biomech; 2020 May; 104():109764. PubMed ID: 32247526 [TBL] [Abstract][Full Text] [Related]
3. Mechanical and biological performance of printed alginate/methylcellulose/halloysite nanotube/polyvinylidene fluoride bio-scaffolds. Roushangar Zineh B; Shabgard MR; Roshangar L Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():779-789. PubMed ID: 30184807 [TBL] [Abstract][Full Text] [Related]
4. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment. Amir Afshar H; Ghaee A Carbohydr Polym; 2016 Oct; 151():1120-1131. PubMed ID: 27474663 [TBL] [Abstract][Full Text] [Related]
5. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Liu M; Dai L; Shi H; Xiong S; Zhou C Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999 [TBL] [Abstract][Full Text] [Related]
6. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157 [TBL] [Abstract][Full Text] [Related]
7. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
8. An Experimental Study on the Mechanical and Biological Properties of Bio-Printed Alginate/Halloysite Nanotube/Methylcellulose/Russian Olive-Based Scaffolds. Roushangar Zineh B; Shabgard MR; Roshangar L Adv Pharm Bull; 2018 Nov; 8(4):643-655. PubMed ID: 30607337 [No Abstract] [Full Text] [Related]
9. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction. Visscher DO; Gleadall A; Buskermolen JK; Burla F; Segal J; Koenderink GH; Helder MN; van Zuijlen PPM J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1711-1721. PubMed ID: 30383916 [TBL] [Abstract][Full Text] [Related]
11. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
12. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
13. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
14. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Sadeghianmaryan A; Naghieh S; Yazdanpanah Z; Alizadeh Sardroud H; Sharma NK; Wilson LD; Chen X Int J Biol Macromol; 2022 Apr; 204():62-75. PubMed ID: 35124017 [TBL] [Abstract][Full Text] [Related]
16. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
17. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581 [TBL] [Abstract][Full Text] [Related]
18. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour Souza A; Kevin M; Rodriguez BJ; Reynaud EG Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635 [TBL] [Abstract][Full Text] [Related]
19. Development and optimization of starch-based biomaterial inks and the effect of infill patterns on the mechanical, physicochemical, and biological properties of 3D printed scaffolds for tissue engineering. Shyam R; Palaniappan A Int J Biol Macromol; 2024 Feb; 258(Pt 2):128986. PubMed ID: 38154358 [TBL] [Abstract][Full Text] [Related]
20. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels. Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]