BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 36066743)

  • 1. 3D printing of alginate/thymoquinone/halloysite nanotube bio-scaffolds for cartilage repairs: experimental and numerical study.
    Zineh BR; Roshangar L; Meshgi S; Shabgard M
    Med Biol Eng Comput; 2022 Nov; 60(11):3069-3080. PubMed ID: 36066743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and numerical study on the performance of printed alginate/hyaluronic acid/halloysite nanotube/polyvinylidene fluoride bio-scaffolds.
    Roushangar Zineh B; Shabgard MR; Roshangar L; Jahani K
    J Biomech; 2020 May; 104():109764. PubMed ID: 32247526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and biological performance of printed alginate/methylcellulose/halloysite nanotube/polyvinylidene fluoride bio-scaffolds.
    Roushangar Zineh B; Shabgard MR; Roshangar L
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():779-789. PubMed ID: 30184807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.
    Amir Afshar H; Ghaee A
    Carbohydr Polym; 2016 Oct; 151():1120-1131. PubMed ID: 27474663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering.
    Liu M; Dai L; Shi H; Xiong S; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction.
    Visscher DO; Gleadall A; Buskermolen JK; Burla F; Segal J; Koenderink GH; Helder MN; van Zuijlen PPM
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1711-1721. PubMed ID: 30383916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Experimental Study on the Mechanical and Biological Properties of Bio-Printed Alginate/Halloysite Nanotube/Methylcellulose/Russian Olive-Based Scaffolds.
    Roushangar Zineh B; Shabgard MR; Roshangar L
    Adv Pharm Bull; 2018 Nov; 8(4):643-655. PubMed ID: 30607337
    [No Abstract]   [Full Text] [Related]  

  • 10. Drug-Loaded Halloysite Nanotube-Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Sustained Antimicrobial Protection.
    De Silva RT; Dissanayake RK; Mantilaka MMMGPG; Wijesinghe WPSL; Kaleel SS; Premachandra TN; Weerasinghe L; Amaratunga GAJ; de Silva KMN
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33913-33922. PubMed ID: 30220194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application.
    Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration.
    Sadeghianmaryan A; Naghieh S; Yazdanpanah Z; Alizadeh Sardroud H; Sharma NK; Wilson LD; Chen X
    Int J Biol Macromol; 2022 Apr; 204():62-75. PubMed ID: 35124017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing.
    Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A
    Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour
    Souza A; Kevin M; Rodriguez BJ; Reynaud EG
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and optimization of starch-based biomaterial inks and the effect of infill patterns on the mechanical, physicochemical, and biological properties of 3D printed scaffolds for tissue engineering.
    Shyam R; Palaniappan A
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):128986. PubMed ID: 38154358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels.
    Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R
    ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.