These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36066753)

  • 1. Thermal rectification in ultra-narrow hydrogen functionalized graphene: a non-equilibrium molecular dynamics study.
    Sharifi M; Heidaryan E
    J Mol Model; 2022 Sep; 28(10):298. PubMed ID: 36066753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal rectification in novel two-dimensional hybrid graphene/BCN sheets: A molecular dynamics simulation.
    Farzadian O; Yousefi F; Shafiee M; Khoeini F; Spitas C; Kostas KV
    J Mol Graph Model; 2024 Jun; 129():108763. PubMed ID: 38555799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon thermal rectification in hybrid graphene-[Formula: see text]: a molecular dynamics simulation.
    Farzadian O; Razeghiyadaki A; Spitas C; Kostas KV
    Nanotechnology; 2020 Nov; 31(48):485401. PubMed ID: 32931472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-carbon nitride interface-geometry effectson thermal rectification: A molecular dynamicssimulation.
    Farzadian O; Spitas C; Kostas K
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33601345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-carbon nitride interface-geometry effects on thermal rectification: a molecular dynamics simulation.
    Farzadian O; Spitas C; Kostas KV
    Nanotechnology; 2021 Mar; 32(21):215403. PubMed ID: 33661761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach.
    Yousefi F; Khoeini F; Rajabpour A
    Nanotechnology; 2020 Apr; 31(28):285707. PubMed ID: 32217831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet.
    Hong Y; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2016 Sep; 18(35):24164-70. PubMed ID: 27531348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Study of the Thermal Rectification Properties of a Graphene-Based Nanostructure.
    Chen J; Meng L
    ACS Omega; 2022 Aug; 7(32):28030-28040. PubMed ID: 35990432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon thermal conduction in a graphene-C
    Han D; Wang X; Ding W; Chen Y; Zhang J; Xin G; Cheng L
    Nanotechnology; 2019 Feb; 30(7):075403. PubMed ID: 30524108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization.
    Wei A; Lahkar S; Li X; Li S; Ye H
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45180-45188. PubMed ID: 31746588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube-Graphene Intramolecular Junctions.
    Yang X; Yu D; Cao B; To AC
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):29-35. PubMed ID: 27936563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure.
    Zhang J; Wang X; Hong Y; Xiong Q; Jiang J; Yue Y
    Nanotechnology; 2017 Jan; 28(3):035404. PubMed ID: 27966468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant Thermal Rectification from Single-Carbon Nanotube-Graphene Junction.
    Yang X; Yu D; Cao B
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24078-24084. PubMed ID: 28636314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Interface Thermal Resistance between Polymer and Mold Insert in Micro-Injection Molding by Non-Equilibrium Molecular Dynamics.
    Weng C; Li J; Lai J; Liu J; Wang H
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Interface Junction, In-Plane Heterostructures Capable of Mechanically Mediating On-Demand Asymmetry of Thermal Transports.
    Gao Y; Xu B
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34506-34517. PubMed ID: 28895714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conduction and rectification phenomena in nanoporous silicon membranes.
    Hahn KR; Melis C; Colombo L
    Phys Chem Chem Phys; 2022 Jun; 24(22):13625-13632. PubMed ID: 35638473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of high thermal rectification behavior in carbon/C
    Xing Z; Liu Y; Wu N; Wang S; Zhang X
    Phys Chem Chem Phys; 2024 Aug; 26(32):21727-21738. PubMed ID: 39099465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice.
    Wang X; Wang M; Hong Y; Wang Z; Zhang J
    Phys Chem Chem Phys; 2017 Sep; 19(35):24240-24248. PubMed ID: 28848976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures.
    Wang Y; Vallabhaneni A; Hu J; Qiu B; Chen YP; Ruan X
    Nano Lett; 2014 Feb; 14(2):592-6. PubMed ID: 24393070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal rectification in polytelescopic Ge nanowires.
    Molaei F; Farzadian O; Zarghami Dehaghani M; Spitas C; Hamed Mashhadzadeh A
    J Mol Graph Model; 2022 Nov; 116():108252. PubMed ID: 35749890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.