These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36066996)

  • 1. Bayesian Active Learning for Scanning Probe Microscopy: From Gaussian Processes to Hypothesis Learning.
    Ziatdinov M; Liu Y; Kelley K; Vasudevan R; Kalinin SV
    ACS Nano; 2022 Sep; 16(9):13492-13512. PubMed ID: 36066996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy.
    Kalinin SV; Ziatdinov M; Hinkle J; Jesse S; Ghosh A; Kelley KP; Lupini AR; Sumpter BG; Vasudevan RK
    ACS Nano; 2021 Aug; 15(8):12604-12627. PubMed ID: 34269558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics Discovery in Nanoplasmonic Systems via Autonomous Experiments in Scanning Transmission Electron Microscopy.
    Roccapriore KM; Kalinin SV; Ziatdinov M
    Adv Sci (Weinh); 2022 Dec; 9(36):e2203422. PubMed ID: 36344455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries.
    Ziatdinov MA; Liu Y; Morozovska AN; Eliseev EA; Zhang X; Takeuchi I; Kalinin SV
    Adv Mater; 2022 May; 34(20):e2201345. PubMed ID: 35279893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Scanning Probe Microscopy via Machine Learning: Non-Rectangular Scans with Compressed Sensing and Gaussian Process Optimization.
    Kelley KP; Ziatdinov M; Collins L; Susner MA; Vasudevan RK; Balke N; Kalinin SV; Jesse S
    Small; 2020 Sep; 16(37):e2002878. PubMed ID: 32780947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Causal Physical Mechanisms via Non-Gaussian Linear Models and Deep Kernel Learning: Applications for Ferroelectric Domain Structures.
    Liu Y; Ziatdinov M; Kalinin SV
    ACS Nano; 2022 Jan; 16(1):1250-1259. PubMed ID: 34964598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Physics of Ferroelectric Domain Walls in Real Time: Deep Learning Enabled Scanning Probe Microscopy.
    Liu Y; Kelley KP; Funakubo H; Kalinin SV; Ziatdinov M
    Adv Sci (Weinh); 2022 Nov; 9(31):e2203957. PubMed ID: 36065001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Experiments in Scanning Probe Microscopy and Spectroscopy: Choosing Where to Explore Polarization Dynamics in Ferroelectrics.
    Vasudevan RK; Kelley KP; Hinkle J; Funakubo H; Jesse S; Kalinin SV; Ziatdinov M
    ACS Nano; 2021 Jul; 15(7):11253-11262. PubMed ID: 34228427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Experiment in 4D-STEM: Exploring Emergent Physics and Structural Behaviors.
    Roccapriore KM; Dyck O; Oxley MP; Ziatdinov M; Kalinin SV
    ACS Nano; 2022 May; 16(5):7605-7614. PubMed ID: 35476426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials.
    Liu Y; Morozovska AN; Eliseev EA; Kelley KP; Vasudevan R; Ziatdinov M; Kalinin SV
    Patterns (N Y); 2023 Mar; 4(3):100704. PubMed ID: 36960442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning.
    Lu CK; Shafto P
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaussian processes for machine learning.
    Seeger M
    Int J Neural Syst; 2004 Apr; 14(2):69-106. PubMed ID: 15112367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaussian Process Panel Modeling-Machine Learning Inspired Analysis of Longitudinal Panel Data.
    Karch JD; Brandmaier AM; Voelkle MC
    Front Psychol; 2020; 11():351. PubMed ID: 32265770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven experimental design and model development using Gaussian process with active learning.
    Chang J; Kim J; Zhang BT; Pitt MA; Myung JI
    Cogn Psychol; 2021 Mar; 125():101360. PubMed ID: 33472104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Relationship of Microstructure and Conductivity in Metal Halide Perovskites via Active Learning-Driven Automated Scanning Probe Microscopy.
    Liu Y; Yang J; Vasudevan RK; Kelley KP; Ziatdinov M; Kalinin SV; Ahmadi M
    J Phys Chem Lett; 2023 Apr; 14(13):3352-3359. PubMed ID: 36994975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling autonomous scanning probe microscopy imaging of single molecules with deep learning.
    Sotres J; Boyd H; Gonzalez-Martinez JF
    Nanoscale; 2021 May; 13(20):9193-9203. PubMed ID: 33885692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records.
    Li Y; Rao S; Hassaine A; Ramakrishnan R; Canoy D; Salimi-Khorshidi G; Mamouei M; Lukasiewicz T; Rahimi K
    Sci Rep; 2021 Oct; 11(1):20685. PubMed ID: 34667200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning for automated quality assurance in radiotherapy: A proof of principle using EPID data description.
    El Naqa I; Irrer J; Ritter TA; DeMarco J; Al-Hallaq H; Booth J; Kim G; Alkhatib A; Popple R; Perez M; Farrey K; Moran JM
    Med Phys; 2019 Apr; 46(4):1914-1921. PubMed ID: 30734324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Intelligence for Autonomous Molecular Design: A Perspective.
    Joshi RP; Kumar N
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.