These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36067113)

  • 1. Surface-Acoustic-Wave (SAW)-Driven Device for Three-Dimensional Cell Manipulation.
    Wang Z; Tao J; Tian J; Wei J; Hu Y
    IEEE Trans Biomed Eng; 2023 Mar; 70(3):780-788. PubMed ID: 36067113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncontact Manipulation of Intracellular Structure Based on Focused Surface Acoustic Waves.
    Wang Z; Chen X; Tian J; Wei J; Hu Y
    Anal Chem; 2023 Jan; 95(2):827-835. PubMed ID: 36594897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Servoed Three-Dimensional Cell Rotation System.
    Wang Z; Latt WT; Tan SY; Ang WT
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2498-507. PubMed ID: 25993702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-Pérot Spectra.
    Kelly L; Berini P; Bao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic System for the Blastocyst Embryo Manipulation and Rotation.
    Abu Ajamieh I; Benhabib B; Mills JK
    Ann Biomed Eng; 2020 Jan; 48(1):426-436. PubMed ID: 31552512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo acoustic manipulation of microparticles in zebrafish embryos.
    Jooss VM; Bolten JS; Huwyler J; Ahmed D
    Sci Adv; 2022 Mar; 8(12):eabm2785. PubMed ID: 35333569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Acoustic-Wave (SAW)-Driven Device for Dynamic Cell Cultures.
    Greco G; Agostini M; Tonazzini I; Sallemi D; Barone S; Cecchini M
    Anal Chem; 2018 Jun; 90(12):7450-7457. PubMed ID: 29791795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotational manipulation of single cells and organisms using acoustic waves.
    Ahmed D; Ozcelik A; Bojanala N; Nama N; Upadhyay A; Chen Y; Hanna-Rose W; Huang TJ
    Nat Commun; 2016 Mar; 7():11085. PubMed ID: 27004764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves.
    Liu Y; Yin Q; Luo Y; Huang Z; Cheng Q; Zhang W; Zhou B; Zhou Y; Ma Z
    Ultrason Sonochem; 2023 Jun; 96():106441. PubMed ID: 37216791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic streaming of microparticles using graphene-based interdigital transducers.
    Mišeikis V; Shilton RJ; Travagliati M; Agostini M; Cecchini M; Piazza V; Coletti C
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34030151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Acoustic Trapping, Translating, Rotating, and Orienting of Organism From Heterogeneous Mixture.
    Jia Y; Wang M; Li J; An S; Li T; Liu S
    IEEE Trans Biomed Eng; 2024 May; 71(5):1542-1551. PubMed ID: 38117632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of cancer cells in a sessile droplet
    Nam H; Sung HJ; Park J; Jeon JS
    Lab Chip; 2021 Dec; 22(1):47-56. PubMed ID: 34821225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging.
    Lam KH; Li Y; Li Y; Lim HG; Zhou Q; Shung KK
    Sci Rep; 2016 Nov; 6():37554. PubMed ID: 27874052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Embryo Manipulation and Rotation via Robotic nDEP-Tweezers.
    Huang K; Ajamieh IA; Cui Z; Lai J; Mills JK; Chu HK
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2152-2163. PubMed ID: 33052848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects.
    Kang P; Tian Z; Yang S; Yu W; Zhu H; Bachman H; Zhao S; Zhang P; Wang Z; Zhong R; Huang TJ
    Lab Chip; 2020 Mar; 20(5):987-994. PubMed ID: 32010910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput and directed microparticle manipulation in complex-shaped maze chambers based on travelling surface acoustic waves.
    Weng W; Pan H; Wang Y
    Analyst; 2022 Nov; 147(22):4962-4970. PubMed ID: 36255404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.