BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36067166)

  • 1. Clock gene-dependent glutamate dynamics in the bean bug brain regulate photoperiodic reproduction.
    Hasebe M; Shiga S
    PLoS Biol; 2022 Sep; 20(9):e3001734. PubMed ID: 36067166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oviposition-promoting pars intercerebralis neurons show
    Hasebe M; Shiga S
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33622784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanism of circadian clock-based photoperiodism in insects and snails.
    Hamanaka Y; Hasebe M; Shiga S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):601-625. PubMed ID: 37596422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males.
    Ikeno T; Numata H; Goto SG
    J Insect Physiol; 2011 Jul; 57(7):935-8. PubMed ID: 21550348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris.
    Ikeno T; Numata H; Goto SG; Shiga S
    J Exp Biol; 2014 Feb; 217(Pt 3):453-62. PubMed ID: 24198258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian clock outputs regulating insect photoperiodism: A potential role for glutamate transporter.
    Des Marteaux L; Xi J; Mano G; Goto SG
    Biochem Biophys Res Commun; 2022 Jan; 589():100-106. PubMed ID: 34902745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris.
    Shimokawa K; Numata H; Shiga S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Aug; 194(8):751-62. PubMed ID: 18546002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoperiodic diapause under the control of circadian clock genes in an insect.
    Ikeno T; Tanaka SI; Numata H; Goto SG
    BMC Biol; 2010 Sep; 8():116. PubMed ID: 20815865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of photoperiod and functional clock on male diapause in cryptochrome and pdf mutants in the linden bug Pyrrhocoris apterus.
    Kaniewska MM; Chvalová D; Dolezel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):575-584. PubMed ID: 37302092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping PERIOD-immunoreactive cells with neurons relevant to photoperiodic response in the bean bug Riptortus pedestris.
    Koide R; Xi J; Hamanaka Y; Shiga S
    Cell Tissue Res; 2021 Sep; 385(3):571-583. PubMed ID: 33954831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali.
    Hasebe M; Kotaki T; Shiga S
    J Insect Physiol; 2022; 137():104359. PubMed ID: 35041845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate and clock help bean bugs track seasonal reproductive changes.
    Hidalgo S; Chiu JC
    PLoS Biol; 2022 Sep; 20(9):e3001796. PubMed ID: 36070295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris.
    Ikeno T; Numata H; Goto SG
    Biochem Biophys Res Commun; 2011 Jul; 410(3):394-7. PubMed ID: 21669185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of the clock gene period in photoperiodism in larval development and production of diapause eggs in the silkworm Bombyx mori.
    Hasebe M; Sato M; Ushioda S; Kusuhara W; Kominato K; Shiga S
    J Insect Physiol; 2024 Mar; 153():104615. PubMed ID: 38237657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoperiodic Response in the Pars Intercerebralis Neurons, Including Plast-MIP Neurons, in the Brown-Winged Green Bug,
    Hasebe M; Shiga S
    Zoolog Sci; 2021 Aug; 38(4):317-325. PubMed ID: 34342952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence.
    Kauranen H; Kinnunen J; Hiillos AL; Lankinen P; Hopkins D; Wiberg RAW; Ritchie MG; Hoikkala A
    J Exp Biol; 2019 Oct; 222(Pt 20):. PubMed ID: 31511345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Afferent neural pathways from the photoperiodic receptor in the bean bug, Riptortus pedestris.
    Xi J; Toyoda I; Shiga S
    Cell Tissue Res; 2017 Jun; 368(3):469-485. PubMed ID: 28144785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi.
    Zhu L; Tian Z; Guo S; Liu W; Zhu F; Wang XP
    Insect Biochem Mol Biol; 2019 Jan; 104():1-10. PubMed ID: 30423421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus.
    Urbanová V; Bazalová O; Vaněčková H; Dolezel D
    Insect Biochem Mol Biol; 2016 Mar; 70():184-90. PubMed ID: 26826599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly.
    Iiams SE; Lugena AB; Zhang Y; Hayden AN; Merlin C
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25214-25221. PubMed ID: 31767753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.