These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 36067267)
1. Tonotopic differentiation of presynaptic neurotransmitter-releasing machinery in the auditory brainstem during the prehearing period and its selective deficits in Fmr1 knockout mice. Yu X; Wang Y J Comp Neurol; 2022 Dec; 530(18):3248-3269. PubMed ID: 36067267 [TBL] [Abstract][Full Text] [Related]
2. Synaptotagmins I and II in the developing rat auditory brainstem: Synaptotagmin I is transiently expressed in glutamate-releasing immature inhibitory terminals. Cooper AP; Gillespie DC J Comp Neurol; 2011 Aug; 519(12):2417-33. PubMed ID: 21456023 [TBL] [Abstract][Full Text] [Related]
3. Tonotopic alterations in inhibitory input to the medial nucleus of the trapezoid body in a mouse model of Fragile X syndrome. McCullagh EA; Salcedo E; Huntsman MM; Klug A J Comp Neurol; 2017 Nov; 525(16):3543-3562. PubMed ID: 28744893 [TBL] [Abstract][Full Text] [Related]
4. Expression and Neurotransmitter Association of the Synaptic Calcium Sensor Synaptotagmin in the Avian Auditory Brain Stem. MacLeod KM; Pandya S J Assoc Res Otolaryngol; 2022 Dec; 23(6):701-720. PubMed ID: 35999323 [TBL] [Abstract][Full Text] [Related]
5. Synaptotagmin2 (Syt2) Drives Fast Release Redundantly with Syt1 at the Output Synapses of Parvalbumin-Expressing Inhibitory Neurons. Bouhours B; Gjoni E; Kochubey O; Schneggenburger R J Neurosci; 2017 Apr; 37(17):4604-4617. PubMed ID: 28363983 [TBL] [Abstract][Full Text] [Related]
6. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway. Alamilla J; Gillespie DC PLoS One; 2013; 8(9):e75688. PubMed ID: 24069436 [TBL] [Abstract][Full Text] [Related]
7. Deletion of Fmr1 alters function and synaptic inputs in the auditory brainstem. Rotschafer SE; Marshak S; Cramer KS PLoS One; 2015; 10(2):e0117266. PubMed ID: 25679778 [TBL] [Abstract][Full Text] [Related]
8. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Hackett TA; Clause AR; Takahata T; Hackett NJ; Polley DB Brain Struct Funct; 2016 Jun; 221(5):2619-73. PubMed ID: 26159773 [TBL] [Abstract][Full Text] [Related]
9. Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. Strumbos JG; Brown MR; Kronengold J; Polley DB; Kaczmarek LK J Neurosci; 2010 Aug; 30(31):10263-71. PubMed ID: 20685971 [TBL] [Abstract][Full Text] [Related]
10. Glycinergic and GABAergic calcium responses in the developing lateral superior olive. Kullmann PH; Ene FA; Kandler K Eur J Neurosci; 2002 Apr; 15(7):1093-104. PubMed ID: 11982621 [TBL] [Abstract][Full Text] [Related]
11. Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Rotschafer SE; Cramer KS eNeuro; 2017; 4(6):. PubMed ID: 29291238 [TBL] [Abstract][Full Text] [Related]
12. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. Johnson J; Tian N; Caywood MS; Reimer RJ; Edwards RH; Copenhagen DR J Neurosci; 2003 Jan; 23(2):518-29. PubMed ID: 12533612 [TBL] [Abstract][Full Text] [Related]
13. Subtle differences in synaptic transmission in medial nucleus of trapezoid body neurons between wild-type and Fmr1 knockout mice. Lu Y Brain Res; 2019 Aug; 1717():95-103. PubMed ID: 31004576 [TBL] [Abstract][Full Text] [Related]
14. Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Bach EC; Kandler K Sci Rep; 2020 Oct; 10(1):16899. PubMed ID: 33037263 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory synapses in the developing auditory system are glutamatergic. Gillespie DC; Kim G; Kandler K Nat Neurosci; 2005 Mar; 8(3):332-8. PubMed ID: 15746915 [TBL] [Abstract][Full Text] [Related]
16. Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons. Gazula VR; Strumbos JG; Mei X; Chen H; Rahner C; Kaczmarek LK J Comp Neurol; 2010 Aug; 518(16):3205-20. PubMed ID: 20575068 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex. Bragina L; Candiracci C; Barbaresi P; Giovedì S; Benfenati F; Conti F Neuroscience; 2007 Jun; 146(4):1829-40. PubMed ID: 17445987 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex: analysis of synaptogyrin, vesicle-associated membrane protein, and syntaxin. Bragina L; Giovedì S; Barbaresi P; Benfenati F; Conti F Neuroscience; 2010 Feb; 165(3):934-43. PubMed ID: 19909789 [TBL] [Abstract][Full Text] [Related]
19. Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). Takamori S; Rhee JS; Rosenmund C; Jahn R J Neurosci; 2001 Nov; 21(22):RC182. PubMed ID: 11698620 [TBL] [Abstract][Full Text] [Related]
20. Neurotransmitter- and Release-Mode-Specific Modulation of Inhibitory Transmission by Group I Metabotropic Glutamate Receptors in Central Auditory Neurons of the Mouse. Curry RJ; Peng K; Lu Y J Neurosci; 2018 Sep; 38(38):8187-8199. PubMed ID: 30093538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]