These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36067337)

  • 1. Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X.
    Leong YX; Tan EX; Leong SX; Lin Koh CS; Thanh Nguyen LB; Ting Chen JR; Xia K; Ling XY
    ACS Nano; 2022 Sep; 16(9):13279-13293. PubMed ID: 36067337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic nanosensors for point-of-care biomarker detection.
    Jin C; Wu Z; Molinski JH; Zhou J; Ren Y; Zhang JXJ
    Mater Today Bio; 2022 Mar; 14():100263. PubMed ID: 35514435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress of feature selection and machine learning methods for mass spectrometry-based protein biomarker discovery].
    Xu K; Han M; Huang C; Chang C; Zhu Y
    Sheng Wu Gong Cheng Xue Bao; 2019 Sep; 35(9):1619-1632. PubMed ID: 31559744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging nanosensor platforms and machine learning strategies toward rapid, point-of-need small-molecule metabolite detection and monitoring.
    Leong SX; Leong YX; Koh CSL; Tan EX; Nguyen LBT; Chen JRT; Chong C; Pang DWC; Sim HYF; Liang X; Tan NS; Ling XY
    Chem Sci; 2022 Sep; 13(37):11009-11029. PubMed ID: 36320477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in nanosensors for cardiovascular disease detection.
    Tang X; Zhu Y; Guan W; Zhou W; Wei P
    Life Sci; 2022 Sep; 305():120733. PubMed ID: 35777581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithmically Guided Optical Nanosensor Selector (AGONS): Guiding Data Acquisition, Processing, and Discrimination for Biological Sampling.
    Smith CW; Hizir MS; Nandu N; Yigit MV
    Anal Chem; 2022 Jan; 94(2):1195-1202. PubMed ID: 34964601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancements within Modern Machine Learning Methodology: Impacts and Prospects in Biomarker Discovery.
    Ledesma D; Symes S; Richards S
    Curr Med Chem; 2021; 28(32):6512-6531. PubMed ID: 33557728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications.
    Fu Y; Ma Q
    Nanoscale; 2020 Jul; 12(26):13879-13898. PubMed ID: 32578649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning in nephrology: scratching the surface.
    Li Q; Fan QL; Han QX; Geng WJ; Zhao HH; Ding XN; Yan JY; Zhu HY
    Chin Med J (Engl); 2020 Mar; 133(6):687-698. PubMed ID: 32049747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Molecular Biomarkers for Diseases With Machine Learning Based on Integrative Omics.
    Shi K; Lin W; Zhao XM
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2514-2525. PubMed ID: 32305934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.
    Gaur P; Chaturvedi A
    Interdiscip Sci; 2019 Jun; 11(2):206-214. PubMed ID: 28733902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanosensor based approaches for quantitative detection of heparin.
    Pathak A; Verma N; Tripathi S; Mishra A; Poluri KM
    Talanta; 2024 Jun; 273():125873. PubMed ID: 38460425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
    Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M
    Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preventing dataset shift from breaking machine-learning biomarkers.
    Dockès J; Varoquaux G; Poline JB
    Gigascience; 2021 Sep; 10(9):. PubMed ID: 34585237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ten years of image analysis and machine learning competitions in dementia.
    Bron EE; Klein S; Reinke A; Papma JM; Maier-Hein L; Alexander DC; Oxtoby NP
    Neuroimage; 2022 Jun; 253():119083. PubMed ID: 35278709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects and Challenges of Using Machine Learning for Academic Forecasting.
    Onyema EM; Almuzaini KK; Onu FU; Verma D; Gregory US; Puttaramaiah M; Afriyie RK
    Comput Intell Neurosci; 2022; 2022():5624475. PubMed ID: 35909823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction Machines: Applied Machine Learning for Therapeutic Protein Design and Development.
    Kamerzell TJ; Middaugh CR
    J Pharm Sci; 2021 Feb; 110(2):665-681. PubMed ID: 33278409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging early diagnostic methods for acute kidney injury.
    Xiao Z; Huang Q; Yang Y; Liu M; Chen Q; Huang J; Xiang Y; Long X; Zhao T; Wang X; Zhu X; Tu S; Ai K
    Theranostics; 2022; 12(6):2963-2986. PubMed ID: 35401836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Systematic Literature Review on Distributed Machine Learning in Edge Computing.
    Filho CP; Marques E; Chang V; Dos Santos L; Bernardini F; Pires PF; Ochi L; Delicato FC
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed Evolution of Near-Infrared Serotonin Nanosensors with Machine Learning-Based Screening.
    An S; Suh Y; Kelich P; Lee D; Vukovic L; Jeong S
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.