These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36067549)

  • 1. Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials.
    Costa C; Viana A; Silva C; Marques EF; Azoia NG
    Waste Manag; 2022 Nov; 153():99-109. PubMed ID: 36067549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies of Recovery and Organic Recycling Used in Textile Waste Management.
    Wojnowska-Baryła I; Bernat K; Zaborowska M
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis.
    Sanchis-Sebastiá M; Ruuth E; Stigsson L; Galbe M; Wallberg O
    Waste Manag; 2021 Feb; 121():248-254. PubMed ID: 33388647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of cellulosic fibers by enzymatic process.
    Shojaei KM; Dadashian F; Montazer M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):744-52. PubMed ID: 22161212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling different textile wastes for methane production: Morphological and microstructural changes and microbial community dynamics.
    Jin W; Dai Z; Wang L; Cai F; Song C; Liu G; Chen C
    Waste Manag; 2022 Sep; 151():154-162. PubMed ID: 35952413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.
    Asaadi S; Hummel M; Hellsten S; Härkäsalmi T; Ma Y; Michud A; Sixta H
    ChemSusChem; 2016 Nov; 9(22):3250-3258. PubMed ID: 27796085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current recycling strategies and high-value utilization of waste cotton.
    Lu L; Fan W; Meng X; Xue L; Ge S; Wang C; Foong SY; Tan CSY; Sonne C; Aghbashlo M; Tabatabaei M; Lam SS
    Sci Total Environ; 2023 Jan; 856(Pt 1):158798. PubMed ID: 36116663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic textile recycling - best practices and outlook.
    Piribauer B; Bartl A; Ipsmiller W
    Waste Manag Res; 2021 Oct; 39(10):1277-1290. PubMed ID: 34238113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects.
    Pensupa N; Leu SY; Hu Y; Du C; Liu H; Jing H; Wang H; Lin CSK
    Top Curr Chem (Cham); 2017 Aug; 375(5):76. PubMed ID: 28815435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Biobased Textile Fiber from Colombian Agro-Industrial Waste Fiber.
    Amaya Vergara MC; Cortés Gómez MP; Restrepo Restrepo MC; Manrique Henao J; Pereira Soto MA; Gañán Rojo PF; Castro Herazo CI; Zuluaga Gallego R
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30326560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state NMR method for the quantification of cellulose and polyester in textile blends.
    Haslinger S; Hietala S; Hummel M; Maunu SL; Sixta H
    Carbohydr Polym; 2019 Mar; 207():11-16. PubMed ID: 30599991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of viscose yarn waste through one-step extraction of nanocellulose.
    Prado KS; Gonzales D; Spinacé MAS
    Int J Biol Macromol; 2019 Sep; 136():729-737. PubMed ID: 31226379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of cellulose textile fibers.
    Mäkelä M; Rissanen M; Sixta H
    Analyst; 2021 Dec; 146(24):7503-7509. PubMed ID: 34766958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Textile recycling processes, state of the art and current developments: A mini review.
    Piribauer B; Bartl A
    Waste Manag Res; 2019 Feb; 37(2):112-119. PubMed ID: 30632932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the Eco-Efficiency of the Circular Economy in the Recovery of Cellulose from the Shredding of Textile Waste.
    de Oliveira Neto GC; Teixeira MM; Souza GLV; Arns VD; Tucci HNP; Amorim M
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim.
    Manian AP; Müller S; Braun DE; Pham T; Bechtold T
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable conversion of textile industry cotton waste into P-dopped biochar for removal of dyes from textile effluent and valorisation of spent biochar into soil conditioner towards circular economy.
    Kar S; Santra B; Kumar S; Ghosh S; Majumdar S
    Environ Pollut; 2022 Nov; 312():120056. PubMed ID: 36049578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The supply and demand balance of recyclable textiles in the Nordic countries.
    Dukovska-Popovska I; Kjellsdotter Ivert L; Jónsdóttir H; Carin Dreyer H; Kaipia R
    Waste Manag; 2023 Mar; 159():154-162. PubMed ID: 36764240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possibility Routes for Textile Recycling Technology.
    Damayanti D; Wulandari LA; Bagaskoro A; Rianjanu A; Wu HS
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive review on textile waste valorization techniques and their applications.
    Mishra PK; Izrayeel AMD; Mahur BK; Ahuja A; Rastogi VK
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):65962-65977. PubMed ID: 35902525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.