BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36067716)

  • 1. Needle-integrated ultrathin bioimpedance microsensor array for early detection of extravasation.
    Lin R; Jin Y; Li RR; Jiang C; Ping J; Charles CJ; Kong YL; Ho JS
    Biosens Bioelectron; 2022 Nov; 216():114651. PubMed ID: 36067716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biopsy Needle Integrated with Electrical Impedance Sensing Microelectrode Array towards Real-time Needle Guidance and Tissue Discrimination.
    Park J; Choi WM; Kim K; Jeong WI; Seo JB; Park I
    Sci Rep; 2018 Jan; 8(1):264. PubMed ID: 29321531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A carbon nanotube needle biosensor.
    Yun Y; Bange A; Shanov VN; Heineman WR; Halsall HB; Dong Z; Jazieh A; Tu Y; Wong D; Pixley S; Behbehani M; Schulz MJ
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2293-300. PubMed ID: 17663243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.
    Castagnola E; Carli S; Vomero M; Scarpellini A; Prato M; Goshi N; Fadiga L; Kassegne S; Ricci D
    Biointerphases; 2017 Jul; 12(3):031002. PubMed ID: 28704999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paracetamol voltammetric microsensors based on electrocopolymerized-molecularly imprinted film modified carbon fiber microelectrodes.
    Gómez-Caballero A; Goicolea MA; Barrio RJ
    Analyst; 2005 Jul; 130(7):1012-8. PubMed ID: 15965523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-based, flexible glutamate and lactate microsensors for in vivo applications.
    Weltin A; Kieninger J; Enderle B; Gellner AK; Fritsch B; Urban GA
    Biosens Bioelectron; 2014 Nov; 61():192-9. PubMed ID: 24880657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline.
    Hou W; Shi Z; Guo Y; Sun X; Wang X
    Bioprocess Biosyst Eng; 2017 Sep; 40(9):1419-1425. PubMed ID: 28717833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays.
    Fujishiro A; Kaneko H; Kawashima T; Ishida M; Kawano T
    Sci Rep; 2014 May; 4():4868. PubMed ID: 24785307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain.
    Santos RM; Rodrigues MS; Laranjinha J; Barbosa RM
    Biosens Bioelectron; 2013 Jun; 44():152-9. PubMed ID: 23419387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time monitoring of macromolecular biosensing probe self-assembly and on-chip ELISA using impedimetric microsensors.
    Zang F; Gerasopoulos K; Fan XZ; Brown AD; Culver JN; Ghodssi R
    Biosens Bioelectron; 2016 Jul; 81():401-407. PubMed ID: 26995286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biopsy needle integrated with multi-modal physical/chemical sensor array.
    Park J; Jeong Y; Kim J; Gu J; Wang J; Park I
    Biosens Bioelectron; 2020 Jan; 148():111822. PubMed ID: 31698304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of needle to nerve contact based on electric bioimpedance and machine learning methods.
    Kalvoy H; Tronstad C; Ullensvang K; Steinfeldt T; Sauter AR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():9-12. PubMed ID: 29059798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon fiber microelectrode array loaded with the diazonium salt-single-walled carbon nanotubes composites for the simultaneous monitoring of dopamine and serotonin in vivo.
    Liang H; Zhu M; Ye H; Zeng C; Wang S; Niu Y
    Anal Chim Acta; 2021 Nov; 1186():339086. PubMed ID: 34756249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip.
    Chiu SW; Wu HC; Chou TI; Chen H; Tang KT
    Anal Bioanal Chem; 2014 Jun; 406(16):3985-94. PubMed ID: 24385138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
    Tijero M; Gabriel G; Caro J; Altuna A; Hernández R; Villa R; Berganzo J; Blanco FJ; Salido R; Fernández LJ
    Biosens Bioelectron; 2009 Apr; 24(8):2410-6. PubMed ID: 19167206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of multi-spot impedance sensing biopsy needle based on attachable and flexible sensor film.
    Jaeho Park ; Inkyu Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4788-4791. PubMed ID: 28269341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of spine structures with Bioimpedance Probe (BIP) Needle in clinical lumbar punctures.
    Halonen S; Annala K; Kari J; Jokinen S; Lumme A; Kronström K; Yli-Hankala A
    J Clin Monit Comput; 2017 Oct; 31(5):1065-1072. PubMed ID: 27492427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity.
    Metz S; Bertsch A; Bertrand D; Renaud P
    Biosens Bioelectron; 2004 May; 19(10):1309-18. PubMed ID: 15046764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo monitoring of superoxide anion from Alzheimer's rat brains with functionalized ionic liquid polymer decorated microsensor.
    Peng Q; Yan X; Shi X; Ou S; Gu H; Yin X; Shi G; Yu Y
    Biosens Bioelectron; 2019 Nov; 144():111665. PubMed ID: 31494508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human
    Halonen S; Ovissi A; Boyd S; Kari J; Kronström K; Kosunen J; Laurén H; Numminen K; Sievänen H; Hyttinen J
    Physiol Meas; 2022 Feb; 43(1):. PubMed ID: 35051907
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.