These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36067716)

  • 21. Labeless immunosensor assay for prostate specific antigen with picogram per milliliter limits of detection based upon an ac impedance protocol.
    Barton AC; Davis F; Higson SP
    Anal Chem; 2008 Aug; 80(16):6198-205. PubMed ID: 18642881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The design and fabrication of nanoengineered platinum needles with laser welded carbon nanotubes (CNTs) for the electrochemical biosensing of cancer lymph nodes.
    Zandi A; Davari Sh Z; Shojaeian F; Mousavi-Kiasary SMS; Abbasvandi F; Zandi A; Gilani A; Saghafi Z; Kordehlachin Y; Mamdouh A; Miraghaie SH; Hoseinyazdi M; Khayamian MA; Anbiaee R; Faranoush M; Abdolahad M
    Biomater Sci; 2021 Sep; 9(18):6214-6226. PubMed ID: 34357368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes.
    Okuno J; Maehashi K; Kerman K; Takamura Y; Matsumoto K; Tamiya E
    Biosens Bioelectron; 2007 Apr; 22(9-10):2377-81. PubMed ID: 17110096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes.
    Chiu JY; Yu CM; Yen MJ; Chen LC
    Biosens Bioelectron; 2009 Mar; 24(7):2015-20. PubMed ID: 19042119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications.
    Zips S; Grob L; Rinklin P; Terkan K; Adly NY; Weiß LJK; Mayer D; Wolfrum B
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32778-32786. PubMed ID: 31424902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single-walled carbon nanotubes-based electrochemical impedance immunosensor for on-site detection of Listeria monocytogenes.
    Lee BE; Kang T; Jenkins D; Li Y; Wall MM; Jun S
    J Food Sci; 2022 Jan; 87(1):280-288. PubMed ID: 34935132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving glutamate microsensors by optimizing the composition of the redox hydrogel.
    Oldenziel WH; Westerink BH
    Anal Chem; 2005 Sep; 77(17):5520-8. PubMed ID: 16131061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode.
    Ye Y; Ju H
    Biosens Bioelectron; 2005 Nov; 21(5):735-41. PubMed ID: 16242612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotube based aliphatic hydrocarbon sensor.
    Padigi SK; Reddy RK; Prasad S
    Biosens Bioelectron; 2007 Jan; 22(6):829-37. PubMed ID: 16638636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells.
    Varshney M; Li Y
    Biosens Bioelectron; 2009 Jun; 24(10):2951-60. PubMed ID: 19041235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiwalled carbon-nanotube-functionalized microelectrode arrays fabricated by microcontact printing: platform for studying chemical and electrical neuronal signaling.
    Fuchsberger K; Le Goff A; Gambazzi L; Toma FM; Goldoni A; Giugliano M; Stelzle M; Prato M
    Small; 2011 Feb; 7(4):524-30. PubMed ID: 21246714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs.
    Lin J; Wang R; Jiao P; Li Y; Li Y; Liao M; Yu Y; Wang M
    Biosens Bioelectron; 2015 May; 67():546-52. PubMed ID: 25263315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue.
    Zhang Y; Chi K; Xiao J; Xu Y; Zhao A; Xu Y; Sun Y; Xiao F; Wang S
    Biosens Bioelectron; 2020 Feb; 150():111924. PubMed ID: 31818755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation.
    Heim M; Yvert B; Kuhn A
    J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of nano-scale coatings on gold electrodes for bioimpedance studies of breast cancer cells.
    Srinivasaraghavan V; Strobl J; Wang D; Heflin JR; Agah M
    Biomed Microdevices; 2014 Oct; 16(5):689-96. PubMed ID: 24867593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes.
    Taylor IM; Patel NA; Freedman NC; Castagnola E; Cui XT
    Anal Chem; 2019 Oct; 91(20):12917-12927. PubMed ID: 31512849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microscale Biosensor Array Based on Flexible Polymeric Platform toward Lab-on-a-Needle: Real-Time Multiparameter Biomedical Assays on Curved Needle Surfaces.
    Park J; Sempionatto JR; Kim J; Jeong Y; Gu J; Wang J; Park I
    ACS Sens; 2020 May; 5(5):1363-1373. PubMed ID: 32105060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose.
    Wang J; Musameh M
    Analyst; 2003 Nov; 128(11):1382-5. PubMed ID: 14700233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture.
    Boero C; Carrara S; Del Vecchio G; Calzà L; De Micheli G
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):59-67. PubMed ID: 21518668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.