These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 36067744)
1. Relationship between Liquid-Based Cytology Preservative Solutions and Artificial Intelligence: Liquid-Based Cytology Specimen Cell Detection Using YOLOv5 Deep Convolutional Neural Network. Ikeda K; Sakabe N; Maruyama S; Ito C; Shimoyama Y; Sato S; Nagata K Acta Cytol; 2022; 66(6):542-550. PubMed ID: 36067744 [TBL] [Abstract][Full Text] [Related]
2. Relationship between a deep learning model and liquid-based cytological processing techniques. Ikeda K; Sakabe N; Maruyama S; Ito C; Shimoyama Y; Oboshi W; Komene T; Yamaguchi Y; Sato S; Nagata K Cytopathology; 2023 Jul; 34(4):308-317. PubMed ID: 37051774 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the Effect of Processing Technique and Solution Type on Cytomorphology Using Liquid-Based Cytology. Ikeda K; Oboshi W; Hashimoto Y; Komene T; Yamaguchi Y; Sato S; Maruyama S; Furukawa N; Sakabe N; Nagata K Acta Cytol; 2022; 66(1):55-60. PubMed ID: 34644702 [TBL] [Abstract][Full Text] [Related]
4. Effect of Specimen Processing Technique on Cell Detection and Classification by Artificial Intelligence. Maruyama S; Sakabe N; Ito C; Shimoyama Y; Sato S; Ikeda K Am J Clin Pathol; 2023 May; 159(5):448-454. PubMed ID: 36933198 [TBL] [Abstract][Full Text] [Related]
5. The emerging role of deep learning in cytology. Dey P Cytopathology; 2021 Mar; 32(2):154-160. PubMed ID: 33222315 [TBL] [Abstract][Full Text] [Related]
6. A Novel Validated Real-World Dataset for the Diagnosis of Multiclass Serous Effusion Cytology according to the International System and Ground-Truth Validation Data. Abd-Almoniem E; Abd-Alsabour N; Elsheikh S; Mostafa RR; Elesawy YF Acta Cytol; 2024; 68(2):160-170. PubMed ID: 38522415 [TBL] [Abstract][Full Text] [Related]
7. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network. Fu X Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. Currie G; Hawk KE; Rohren E; Vial A; Klein R J Med Imaging Radiat Sci; 2019 Dec; 50(4):477-487. PubMed ID: 31601480 [TBL] [Abstract][Full Text] [Related]
9. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]
10. Staining, magnification, and algorithmic conditions for highly accurate cell detection and cell classification by deep learning. Ikeda K; Sakabe N; Ito C; Shimoyama Y; Toda K; Fukuda K; Yoshizaki Y; Sato S; Nagata K Am J Clin Pathol; 2024 Apr; 161(4):399-410. PubMed ID: 38134350 [TBL] [Abstract][Full Text] [Related]
11. Artificial intelligence for oral and maxillo-facial surgery: A narrative review. Rasteau S; Ernenwein D; Savoldelli C; Bouletreau P J Stomatol Oral Maxillofac Surg; 2022 Jun; 123(3):276-282. PubMed ID: 35091121 [TBL] [Abstract][Full Text] [Related]
12. A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens. Nojima S; Terayama K; Shimoura S; Hijiki S; Nonomura N; Morii E; Okuno Y; Fujita K Cancer Cytopathol; 2021 Dec; 129(12):984-995. PubMed ID: 33979039 [TBL] [Abstract][Full Text] [Related]
13. Application and performance of artificial intelligence technology in cytopathology. Alrafiah AR Acta Histochem; 2022 May; 124(4):151890. PubMed ID: 35366580 [TBL] [Abstract][Full Text] [Related]
14. Artificial intelligence in dermatopathology: Diagnosis, education, and research. Wells A; Patel S; Lee JB; Motaparthi K J Cutan Pathol; 2021 Aug; 48(8):1061-1068. PubMed ID: 33421167 [TBL] [Abstract][Full Text] [Related]
15. Current status of artificial intelligence analysis for endoscopic ultrasonography. Kuwahara T; Hara K; Mizuno N; Haba S; Okuno N; Koda H; Miyano A; Fumihara D Dig Endosc; 2021 Jan; 33(2):298-305. PubMed ID: 33098123 [TBL] [Abstract][Full Text] [Related]
16. Reducing DNA damage by formaldehyde in liquid-based cytology preservation solutions to enable the molecular testing of lung cancer specimens. Matsuo Y; Yoshida T; Yamashita K; Satoh Y Cancer Cytopathol; 2018 Dec; 126(12):1011-1021. PubMed ID: 30343520 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence applied to breast pathology. Yousif M; van Diest PJ; Laurinavicius A; Rimm D; van der Laak J; Madabhushi A; Schnitt S; Pantanowitz L Virchows Arch; 2022 Jan; 480(1):191-209. PubMed ID: 34791536 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of a deep learning algorithm to distinguish large cell neuroendocrine from small cell lung carcinoma in cytology specimens. Gonzalez D; Dietz RL; Pantanowitz L Cytopathology; 2020 Sep; 31(5):426-431. PubMed ID: 32246504 [TBL] [Abstract][Full Text] [Related]
19. Intelligent Imaging in Nuclear Medicine: the Principles of Artificial Intelligence, Machine Learning and Deep Learning. Currie G; Rohren E Semin Nucl Med; 2021 Mar; 51(2):102-111. PubMed ID: 33509366 [TBL] [Abstract][Full Text] [Related]
20. Using a deep learning neural network for the identification of malignant cells in effusion cytology material. Sanyal P; Dey P Cytopathology; 2023 Sep; 34(5):466-471. PubMed ID: 37350108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]