BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36067825)

  • 1. New derivatives from dehydrodieugenol B and its methyl ether displayed high anti-Trypanosoma cruzi activity and cause depolarization of the plasma membrane and collapse the mitochondrial membrane potential.
    Galhardo TS; Ueno AK; Costa-Silva TA; Tempone AG; Carvalho WA; Fischmeister C; Bruneau C; Mandelli D; Lago JHG
    Chem Biol Interact; 2022 Oct; 366():110129. PubMed ID: 36067825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydrodieugenol B derivatives as antiparasitic agents: Synthesis and biological activity against Trypanosoma cruzi.
    Ferreira DD; Sousa FS; Costa-Silva TA; Reimão JQ; Torrecilhas AC; Johns DM; Sear CE; Honorio KM; Lago JHG; Anderson EA; Tempone AG
    Eur J Med Chem; 2019 Aug; 176():162-174. PubMed ID: 31103897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi.
    Grecco SS; Costa-Silva TA; Jerz G; de Sousa FS; Alves Conserva GA; Mesquita JT; Galuppo MK; Tempone AG; Neves BJ; Andrade CH; Cunha RL; Uemi M; Sartorelli P; Lago JH
    Phytomedicine; 2017 Jan; 24():62-67. PubMed ID: 28160863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials.
    Londero VS; Costa-Silva TA; Tempone AG; Namiyama GM; Thevenard F; Antar GM; Baitello JB; Lago JHG
    Bioorg Chem; 2020 Jan; 95():103510. PubMed ID: 31884137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neolignans from leaves of Nectandra leucantha (Lauraceae) display in vitro antitrypanosomal activity via plasma membrane and mitochondrial damages.
    Grecco SS; Costa-Silva TA; Jerz G; de Sousa FS; Londero VS; Galuppo MK; Lima ML; Neves BJ; Andrade CH; Tempone AG; Lago JHG
    Chem Biol Interact; 2017 Nov; 277():55-61. PubMed ID: 28864277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the drug-likeness of inspiring natural products - evaluation of the antiparasitic activity against Trypanosoma cruzi through semi-synthetic and simplified analogues of licarin A.
    Morais TR; Conserva GAA; Varela MT; Costa-Silva TA; Thevenard F; Ponci V; Fortuna A; Falcão AC; Tempone AG; Fernandes JPS; Lago JHG
    Sci Rep; 2020 Mar; 10(1):5467. PubMed ID: 32214193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca
    Conserva GA; Costa-Silva TA; Quirós-Guerrero LM; Marcourt L; Wolfender JL; Queiroz EF; Tempone AG; Lago JHG
    Chem Biol Interact; 2021 Nov; 349():109661. PubMed ID: 34537181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butenolides from Nectandra oppositifolia (Lauraceae) displayed anti-Trypanosoma cruzi activity via deregulation of mitochondria.
    Conserva GAA; da Costa-Silva TA; Amaral M; Antar GM; Neves BJ; Andrade CH; Tempone AG; Lago JHG
    Phytomedicine; 2019 Feb; 54():302-307. PubMed ID: 30668381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enyne acetogenins from Porcelia macrocarpa displayed anti-Trypanosoma cruzi activity and cause a reduction in the intracellular calcium level.
    Thevenard F; Brito IA; Costa-Silva TA; Tempone AG; Lago JHG
    Sci Rep; 2023 Jun; 13(1):10254. PubMed ID: 37355735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dibenzylbutane neolignans from Saururus cernuus L. (Saururaceae) displayed anti-Trypanosoma cruzi activity via alterations in the mitochondrial membrane potential.
    Brito JR; da Costa-Silva TA; Tempone AG; Ferreira EA; Lago JHG
    Fitoterapia; 2019 Sep; 137():104251. PubMed ID: 31271783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential lethal action of C17:2 and C17:0 anacardic acid derivatives in Trypanosoma cruzi - A mechanistic study.
    Umehara E; Costa Silva TA; Mendes VM; Guadagnin RC; Sartorelli P; Tempone AG; Lago JHG
    Bioorg Chem; 2020 Sep; 102():104068. PubMed ID: 32653609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of New Hits as Antitrypanosomal Agents by In Silico and In Vitro Assays Using Neolignan-Inspired Natural Products from
    Araujo SC; Sousa FS; Costa-Silva TA; Tempone AG; Lago JHG; Honorio KM
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammea type coumarins isolated from Calophyllum brasiliense induced apoptotic cell death of Trypanosoma cruzi through mitochondrial dysfunction, ROS production and cell cycle alterations.
    Rodríguez-Hernández KD; Martínez I; Reyes-Chilpa R; Espinoza B
    Bioorg Chem; 2020 Jul; 100():103894. PubMed ID: 32388434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Structure-Activity Relationship of Dehydrodieugenol B Neolignans against
    Sear CE; Pieper P; Amaral M; Romanelli MM; Costa-Silva TA; Haugland MM; Tate JA; Lago JHG; Tempone AG; Anderson EA
    ACS Infect Dis; 2020 Nov; 6(11):2872-2878. PubMed ID: 33047947
    [No Abstract]   [Full Text] [Related]  

  • 15. Andrographolide: A Diterpenoid from
    Barbosa H; Espinoza GZ; Amaral M; de Castro Levatti EV; Abiuzi MB; Veríssimo GC; Fernandes PO; Maltarollo VG; Tempone AG; Honorio KM; Lago JHG
    J Chem Inf Model; 2024 Apr; 64(7):2565-2576. PubMed ID: 38148604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplified Derivatives of Dibenzylbutyrolactone Lignans from Hydrocotyle bonariensis as Antitrypanosomal Candidates.
    Souza DCS; Costa-Silva TA; Morais TR; Brito JR; Ferreira EA; Antar GM; Sartorelli P; Tempone AG; Lago JHG
    Chem Biodivers; 2021 Oct; 18(10):e2100515. PubMed ID: 34424612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound.
    Lara LS; Moreira CS; Calvet CM; Lechuga GC; Souza RS; Bourguignon SC; Ferreira VF; Rocha D; Pereira MCS
    Eur J Med Chem; 2018 Jan; 144():572-581. PubMed ID: 29289882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi.
    Pelizzaro-Rocha KJ; Veiga-Santos P; Lazarin-Bidóia D; Ueda-Nakamura T; Dias Filho BP; Ximenes VF; Silva SO; Nakamura CV
    Microbes Infect; 2011 Nov; 13(12-13):1018-24. PubMed ID: 21683800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aporphine Alkaloids from Ocotea puberula with Anti-Trypanosoma Cruzi Potential - Activity of Dicentrine-β-N-Oxide in the Plasma Membrane Electric Potentials.
    Barbosa H; Costa-Silva TA; Alves Conserva GA; Araujo AJ; Lordello ALL; Antar GM; Amaral M; Soares MG; Tempone AG; Lago JHG
    Chem Biodivers; 2021 Apr; 18(4):e2001022. PubMed ID: 33635585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neolignans isolated from Nectandra leucantha induce apoptosis in melanoma cells by disturbance in mitochondrial integrity and redox homeostasis.
    de Sousa FS; Grecco SS; Girola N; Azevedo RA; Figueiredo CR; Lago JHG
    Phytochemistry; 2017 Aug; 140():108-117. PubMed ID: 28478313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.