BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36067974)

  • 1. Fire retardant performance, toxicity and combustion characteristics, and numerical evaluation of core materials for sandwich panels.
    Wi S; Yang S; Yun BY; Kang Y; Kim S
    Environ Pollut; 2022 Nov; 312():120067. PubMed ID: 36067974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufacture and Combustion Characteristics of Cellulose Flame-Retardant Plate through the Hot-Press Method.
    Hwang J; Park D; Rie D
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired, Highly Adhesive, Nanostructured Polymeric Coatings for Superhydrophobic Fire-Extinguishing Thermal Insulation Foam.
    Ma Z; Liu X; Xu X; Liu L; Yu B; Maluk C; Huang G; Wang H; Song P
    ACS Nano; 2021 Jul; 15(7):11667-11680. PubMed ID: 34170679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate.
    McKenna ST; Birtles R; Dickens K; Walker RG; Spearpoint MJ; Stec AA; Hull TR
    Chemosphere; 2018 Apr; 196():429-439. PubMed ID: 29324384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halogenated flame retardants: do the fire safety benefits justify the risks?
    Shaw SD; Blum A; Weber R; Kannan K; Rich D; Lucas D; Koshland CP; Dobraca D; Hanson S; Birnbaum LS
    Rev Environ Health; 2010; 25(4):261-305. PubMed ID: 21268442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview.
    Jiang Y; Yang H; Lin X; Xiang S; Feng X; Wan C
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conductivity and combustion properties of wheat gluten foams.
    Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Influence of Construction Insulation Systems on Public Safety in China.
    Zhang G; Zhu G; Zhao G
    Int J Environ Res Public Health; 2016 Aug; 13(9):. PubMed ID: 27589774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques.
    Li FF
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of environmental impact on the formaldehyde emission and flame-retardant performance of thermal insulation materials.
    Wi S; Park JH; Kim YU; Kim S
    J Hazard Mater; 2021 Jan; 402():123463. PubMed ID: 32702617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of dermal hazard from acid burns with fire retardant garments in a full-size simulation of an engulfment flash fire.
    Mackay CE; Vivanco SN; Yeboah G; Vercellone J
    Burns; 2016 Sep; 42(6):1350-6. PubMed ID: 27325216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of recycled ceramic-based inorganic insulation for improving energy efficiency and flame retardancy of buildings.
    Wi S; Yang S; Berardi U; Kim S
    Environ Int; 2019 Sep; 130():104900. PubMed ID: 31280051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fire behavior of innovative alginate foams.
    Vincent T; Vincent C; Dumazert L; Otazaghine B; Sonnier R; Guibal E
    Carbohydr Polym; 2020 Dec; 250():116910. PubMed ID: 33049885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Sulfur-Containing Polymeric Fire-Retardant Coatings for Fire-Safe Rigid Polyurethane Foam.
    Fang Y; Ma Z; Wei D; Yu Y; Liu L; Shi Y; Gao J; Tang LC; Huang G; Song P
    Macromol Rapid Commun; 2024 Apr; ():e2400068. PubMed ID: 38593218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams.
    Choi KW; Kim JW; Kwon TS; Kang SW; Song JI; Park YT
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions.
    Shi X; Jiang S; Zhu J; Li G; Peng X
    RSC Adv; 2018 Mar; 8(18):9985-9995. PubMed ID: 35540820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Insulating Rigid Polyurethane Foams with Bio-Polyol from Rapeseed Oil Modified by Phosphorus Additive and Reactive Flame Retardants.
    Zemła M; Prociak A; Michałowski S; Cabulis U; Kirpluks M; Simakovs K
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter.
    Meinier R; Sonnier R; Zavaleta P; Suard S; Ferry L
    J Hazard Mater; 2018 Jan; 342():306-316. PubMed ID: 28846917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Inorganic Aluminum Phosphate-Based Flame Retardant and Thermal Insulation Coating and Performance Analysis.
    Cai G; Wu J; Guo J; Wan Y; Zhou Q; Zhang P; Yu X; Wang M
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Fire Hazard Effect of a Multifunctional Flame Retardant in Building Insulation Expandable Polystyrene through a Simple Surface-Coating Method.
    Li L; Shao X; Zhao Z; Liu X; Jiang L; Huang K; Zhao S
    ACS Omega; 2020 Jan; 5(1):799-807. PubMed ID: 31956831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.