BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36067974)

  • 21. Eco-friendly flame retardant nanocrystalline cellulose prepared via silylation.
    Kim H; Youn JR; Song YS
    Nanotechnology; 2018 Nov; 29(45):455702. PubMed ID: 30136647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxic Gas and Smoke Generation and Flammability of Flame-Retardant Plywood.
    Park HJ; Jian H; Wen M; Jo SU
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cage Nanofillers' Influence on Fire Hazard and Toxic Gases Emitted during Thermal Decomposition of Polyurethane Foam.
    Głowacki A; Rybiński P; Żelezik M; Mirkhodjaev UZ
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS).
    Morgan DL
    Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flame retardant and smoke-suppressant rigid polyurethane foam based on sodium alginate and aluminum diethylphosphite.
    Zhang W; Zhao Z; Lei Y
    Des Monomers Polym; 2021 Jan; 24(1):46-52. PubMed ID: 33551667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen/phosphorus synergistic flame retardant-filled flexible polyurethane foams: microstructure, compressive stress, sound absorption, and combustion resistance.
    Li TT; Xing M; Wang H; Huang SY; Fu C; Lou CW; Lin JH
    RSC Adv; 2019 Jul; 9(37):21192-21201. PubMed ID: 35521335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-based P-N flame retardant with ZIF-67 in-situ growth on flexible polyurethane foam with excellent fire safety performance.
    Geng Y; Li R; Zhao Z; Li G; Huang B; Chen X; Jiao C
    Chemosphere; 2024 Jun; 357():142048. PubMed ID: 38641295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignin-Based Phenolic Foam Reinforced by Poplar Fiber and Isocyanate-Terminated Polyurethane Prepolymer.
    Chen G; Liu J; Zhang W; Han Y; Zhang D; Li J; Zhang S
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33800645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionalizing Ti
    Yin Z; Lu J; Hong N; Cheng W; Jia P; Wang H; Hu W; Wang B; Song L; Hu Y
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1300-1312. PubMed ID: 34583035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium - Biomass Composite Materials.
    Jones M; Bhat T; Kandare E; Thomas A; Joseph P; Dekiwadia C; Yuen R; John S; Ma J; Wang CH
    Sci Rep; 2018 Dec; 8(1):17583. PubMed ID: 30514955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of sustainable and highly efficient fire-protective nanocoatings based on polydopamine and phosphorylated cellulose for flexible polyurethane foam.
    Ye D; Wang C; Xi J; Li W; Wang J; Miao E; Xing W; Yu B
    Int J Biol Macromol; 2024 Jun; 272(Pt 1):132639. PubMed ID: 38834116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Combustion gas toxicity of textiles (author's transl)].
    Iwasaki K
    Sangyo Igaku; 1979 Jan; 21(1):36-46. PubMed ID: 470212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flammability of Thick but Thermally Thin Materials including Bio-Based Materials.
    Sonnier R; Dumazert L; Regazzi A; Deborde L; Lanos C
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Selected Organophosphorus Compounds and Nano-Additives on Thermal, Smoke Properties and Quantities of CO and CO
    Staszko S; Półka M
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Systematic Review and Bibliometric Analysis of Flame-Retardant Rigid Polyurethane Foam from 1963 to 2021.
    Pan Y; Yin C; Fernandez C; Fu L; Lin CT
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fire safety enhancement of a highly efficient flame retardant poly(phenylphosphoryl phenylenediamine) in biodegradable poly(lactic acid).
    Wu N; Fu G; Yang Y; Xia M; Yun H; Wang Q
    J Hazard Mater; 2019 Feb; 363():1-9. PubMed ID: 30300772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the Influence of Gypsum upon a Hybrid Flame Retardant Coating on Expanded Polystyrene Beads.
    Bhoite SP; Kim J; Jo W; Bhoite PH; Mali SS; Park KH; Hong CK
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research on the fire extinguishing performance of new gel foam for preventing and controlling the spontaneous combustion of coal gangue.
    Liu C; Zhang R; Wang Z; Zhang X
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88548-88562. PubMed ID: 37436620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxide.
    Sałasińska K; Leszczyńska M; Celiński M; Kozikowski P; Kowiorski K; Lipińska L
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33802345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant.
    Zhang S; Chu F; Xu Z; Zhou Y; Qiu Y; Qian L; Hu Y; Wang B; Hu W
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):768-783. PubMed ID: 34419816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.