These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36068071)

  • 1. Critical Power, Work Capacity, and Recovery Characteristics of Team-Pursuit Cyclists.
    Pugh CF; Beaven CM; Ferguson RA; Driller MW; Palmer CD; Paton CD
    Int J Sports Physiol Perform; 2022 Nov; 17(11):1606-1613. PubMed ID: 36068071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF; Chidnok W; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.
    Jones AM; Vanhatalo A
    Sports Med; 2017 Mar; 47(Suppl 1):65-78. PubMed ID: 28332113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validating an Adjustment to the Intermittent Critical Power Model for Elite Cyclists-Modeling W' Balance During World Cup Team Pursuit Performances.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2022 Feb; 17(2):170-175. PubMed ID: 34560664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling.
    Karsten B; Hopker J; Jobson SA; Baker J; Petrigna L; Klose A; Beedie C
    J Sports Sci; 2017 Jul; 35(14):1420-1425. PubMed ID: 27531664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y; Miura A; Endo M; Kan A; Yanagawa K; Whipp BJ
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single-session testing protocol to determine critical power and W'.
    Constantini K; Sabapathy S; Cross TJ
    Eur J Appl Physiol; 2014 Jun; 114(6):1153-61. PubMed ID: 24563054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for Dynamic Changes in the Power-Duration Relationship Improves the Accuracy of W' Balance Modeling.
    Black MI; Skiba PF; Wylie LJ; Lewis J; Jones AM; Vanhatalo A
    Med Sci Sports Exerc; 2023 Feb; 55(2):235-244. PubMed ID: 36094337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Recovery of W' in the Moderate to Heavy Exercise Intensity Domain.
    Sreedhara VSM; Ashtiani F; Mocko GM; Vahidi A; Hutchison RE
    Med Sci Sports Exerc; 2020 Dec; 52(12):2646-2654. PubMed ID: 32555021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of elevated body core temperature on critical power as determined by a 3-min all-out test.
    Kaiser BW; Kruse KK; Gibson BM; Santisteban KJ; Larson EA; Wilkins BW; Jones AM; Halliwill JR; Minson CT
    J Appl Physiol (1985); 2021 Nov; 131(5):1543-1551. PubMed ID: 34617821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of initial metabolic rate on the power-duration relationship for all-out exercise.
    Parker Simpson L; Jones AM; Vanhatalo A; Wilkerson DP
    Eur J Appl Physiol; 2012 Jul; 112(7):2467-73. PubMed ID: 22052102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and anthropometric determinants of critical power, W' and the reconstitution of W' in trained and untrained male cyclists.
    Chorley A; Bott RP; Marwood S; Lamb KL
    Eur J Appl Physiol; 2020 Nov; 120(11):2349-2359. PubMed ID: 32776219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant.
    Dekerle J; de Souza KM; de Lucas RD; Guglielmo LG; Greco CC; Denadai BS
    PLoS One; 2015; 10(9):e0138428. PubMed ID: 26407169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength training increases endurance time to exhaustion during high-intensity exercise despite no change in critical power.
    Sawyer BJ; Stokes DG; Womack CJ; Morton RH; Weltman A; Gaesser GA
    J Strength Cond Res; 2014 Mar; 28(3):601-9. PubMed ID: 23760362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Critical Power and W' Derived From 2 or 3 Maximal Tests.
    Simpson LP; Kordi M
    Int J Sports Physiol Perform; 2017 Jul; 12(6):825-830. PubMed ID: 27918663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The constant work rate critical power protocol overestimates ramp incremental exercise performance.
    Black MI; Jones AM; Kelly JA; Bailey SJ; Vanhatalo A
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2415-2422. PubMed ID: 27787608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Critical Power in Elite Cyclists: Questioning the Validity of the 3-Minute All-Out Test.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2017 Jul; 12(6):783-787. PubMed ID: 27834562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.