These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36068163)

  • 1. Ultra-Narrow Phosphorene Nanoribbons Produced by Facile Electrochemical Process.
    Abu UO; Akter S; Nepal B; Pitton KA; Guiton BS; Strachan DR; Sumanasekera G; Wang H; Jasinski JB
    Adv Sci (Weinh); 2022 Nov; 9(31):e2203148. PubMed ID: 36068163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Narrow Directed Black Phosphorus Nanoribbons Produced by A Reformative Mechanical Exfoliation Approach.
    Hu B; Zhang T; Wang K; Wang L; Zhang Y; Gao S; Ye X; Zhou Q; Jiang S; Li X; Shi F; Chen C
    Small; 2023 Apr; 19(17):e2207538. PubMed ID: 36890779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of phosphorene nanoribbons.
    Watts MC; Picco L; Russell-Pavier FS; Cullen PL; Miller TS; Bartuś SP; Payton OD; Skipper NT; Tileli V; Howard CA
    Nature; 2019 Apr; 568(7751):216-220. PubMed ID: 30971839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-one-dimensional phosphorene nanoribbons grown on silicon by space-confined chemical vapor transport.
    Du K; Wang M; Liang Z; Lv Q; Hou H; Lei S; Hussain S; Liu G; Liu J; Qiao G
    Chem Commun (Camb); 2023 Feb; 59(17):2433-2436. PubMed ID: 36723200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower Limits of Contact Resistance in Phosphorene Nanodevices with Edge Contacts.
    Poljak M; Matić M; Župančić T; Zeljko A
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic properties of phosphorene nanoribbons with nanoholes.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2018 Feb; 8(14):7486-7493. PubMed ID: 35539136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons.
    Kaur S; Kumar A; Srivastava S; Pandey R; Tankeshwar K
    Nanotechnology; 2018 Apr; 29(15):155701. PubMed ID: 29388562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Sculpture of Black Phosphorus Nanoribbons.
    Masih Das P; Danda G; Cupo A; Parkin WM; Liang L; Kharche N; Ling X; Huang S; Dresselhaus MS; Meunier V; Drndić M
    ACS Nano; 2016 Jun; 10(6):5687-95. PubMed ID: 27192448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery.
    Yu W; Yang J; Li J; Zhang K; Xu H; Zhou X; Chen W; Loh KP
    Adv Mater; 2021 Sep; 33(35):e2102083. PubMed ID: 34292638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient selection methods for black phosphorene nanoribbons.
    Wei N; Chen Y; Zhang Y; Zhou C; Hao X; Xu K; Cai K; Chen J
    Nanoscale; 2018 Mar; 10(9):4385-4390. PubMed ID: 29450437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts.
    Liu Z; Sun Y; Cao H; Xie D; Li W; Wang J; Cheetham AK
    Nat Commun; 2020 Aug; 11(1):3917. PubMed ID: 32764557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimum Contact Configurations for Quasi-One-Dimensional Phosphorene Nanodevices.
    Poljak M; Matić M
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum manifestations in electronic properties of bilayer phosphorene nanoribbons.
    Zhang J; Li SQ; Liu H; Li M; Gao J
    Phys Chem Chem Phys; 2023 Jan; 25(2):1214-1219. PubMed ID: 36524708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size modulation electronic and optical properties of phosphorene nanoribbons: DFT-BOLS approximation.
    Liu Y; Bo M; Yang X; Zhang P; Sun CQ; Huang Y
    Phys Chem Chem Phys; 2017 Feb; 19(7):5304-5309. PubMed ID: 28154850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bandstructure and Size-Scaling Effects in the Performance of Monolayer Black Phosphorus Nanodevices.
    Poljak M; Matić M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deriving MoS
    Yang C; Wang B; Xie Y; Zheng Y; Jin C
    Nanotechnology; 2019 Jun; 30(25):255602. PubMed ID: 30802894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the mechanism of phosphorene nanoribbon synthesis by discharging black phosphorus intercalation compounds.
    Shutt RRC; Aw ESY; Liu Q; Berry-Gair J; Lancaster HJ; Said S; Miller TS; Corà F; Howard CA; Clancy AJ
    Nanoscale; 2024 Jan; 16(4):1742-1750. PubMed ID: 38197428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.