BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36068455)

  • 1. Assessing the effects of β-triketone herbicides on HPPD from environmental bacteria using a combination of in silico and microbiological approaches.
    Thiour-Mauprivez C; Dayan FE; Terol H; Devers M; Calvayrac C; Martin-Laurent F; Barthelmebs L
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):9932-9944. PubMed ID: 36068455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Effects of β-Triketone Herbicides on the Soil Bacterial and
    Thiour-Mauprivez C; Devers-Lamrani M; Bru D; Béguet J; Spor A; Mounier A; Alletto L; Calvayrac C; Barthelmebs L; Martin-Laurent F
    Front Microbiol; 2020; 11():610298. PubMed ID: 33505377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for beta-triketones from Leptospermum scoparium.
    Dayan FE; Duke SO; Sauldubois A; Singh N; McCurdy C; Cantrell C
    Phytochemistry; 2007 Jul; 68(14):2004-14. PubMed ID: 17368492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-triketone inhibitors of plant p-hydroxyphenylpyruvate dioxygenase: modeling and comparative molecular field analysis of their interactions.
    Dayan FE; Singh N; McCurdy CR; Godfrey CA; Larsen L; Weavers RT; Van Klink JW; Perry NB
    J Agric Food Chem; 2009 Jun; 57(12):5194-200. PubMed ID: 19435355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides.
    Romdhane S; Devers-Lamrani M; Martin-Laurent F; Calvayrac C; Rocaboy-Faquet E; Riboul D; Cooper JF; Barthelmebs L
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4138-48. PubMed ID: 25903192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of
    Fu Y; Zhang D; Zhang SQ; Liu YX; Guo YY; Wang MX; Gao S; Zhao LX; Ye F
    J Agric Food Chem; 2019 Oct; 67(43):11839-11847. PubMed ID: 31589436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of two combined series of triketones with HPPD inhibitory activity by molecular modelling.
    Capucho LR; da Cunha EFF; Freitas MP
    SAR QSAR Environ Res; 2023 Mar; 34(3):231-246. PubMed ID: 36951367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Herbicide Resistance of 4-Hydroxyphenylpyruvate Dioxygenase from
    Liu B; Wang H; Zhang K; Zhu J; He Q; He J
    J Agric Food Chem; 2020 Nov; 68(44):12365-12374. PubMed ID: 33105985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional characterization of triketone dioxygenase from Oryza Sativa.
    Duff SMG; Zhang M; Zinnel F; Rydel T; Taylor CM; Chen D; Tilton G; Mamanella P; Duda D; Wang Y; Xiang B; Karunanandaa B; Varagona R; Chittoor J; Qi Q; Hall E; Garvey G; Zeng J; Zhang J; Li X; White T; Jerga A; Haas J
    Biochim Biophys Acta Gen Subj; 2024 Feb; 1868(2):130504. PubMed ID: 37967728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the toxicological profile of 4-hydroxyphenylpyruvate dioxygenase-directed herbicides to Aedes aegypti and Amblyomma americanum.
    McComic SE; Duke SO; Burgess ER; Swale DR
    Pestic Biochem Physiol; 2023 Aug; 194():105532. PubMed ID: 37532340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel amperometric biosensor for ß-triketone herbicides based on hydroxyphenylpyruvate dioxygenase inhibition: A case study for sulcotrione.
    Rocaboy-Faquet E; Barthelmebs L; Calas-Blanchard C; Noguer T
    Talanta; 2016; 146():510-6. PubMed ID: 26695298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors.
    Rocaboy-Faquet E; Noguer T; Romdhane S; Bertrand C; Dayan FE; Barthelmebs L
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7243-52. PubMed ID: 24816780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel HPPD inhibitors: triketone 2H-benzo[b][1,4]oxazin-3(4H)-one analogs.
    Li HB; Li L; Li JX; Han TF; He JL; Zhu YQ
    Pest Manag Sci; 2018 Mar; 74(3):579-589. PubMed ID: 28941309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of 4-hydroxyphenylpyruvate dioxygenases, inhibition by herbicides and engineering for herbicide tolerance in crops.
    Hawkes TR; Langford MP; Viner R; Blain RE; Callaghan FM; Mackay EA; Hogg BV; Singh S; Dale RP
    Pestic Biochem Physiol; 2019 May; 156():9-28. PubMed ID: 31027586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, Synthesis, and Biological Activity of Novel Triketone-Containing Phenoxy Nicotinyl Inhibitors of HPPD.
    Zhang CQ; Gao S; Bo L; Song HM; Liu LM; Zheng MX; Fu Y; Ye F
    J Agric Food Chem; 2024 May; 72(20):11321-11330. PubMed ID: 38714361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-triketone herbicide exposure cause tyrosine and fat accumulation in Caenorhabditis elegans.
    Moin N; Thakur RS; Singh S; Patel DK; Satish A
    Chemosphere; 2023 Jun; 326():138353. PubMed ID: 36914009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of locally naturalized Panicum species to HPPD- and ALS-inhibiting herbicides in maize.
    De Cauwer B; Geeroms T; Claerhout S; Reheul D; Bulcke R
    Commun Agric Appl Biol Sci; 2012; 77(3):353-61. PubMed ID: 23878990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Herbicidal Activity of Triketone-Quinoline Hybrids as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors.
    Wang DW; Lin HY; Cao RJ; Chen T; Wu FX; Hao GF; Chen Q; Yang WC; Yang GF
    J Agric Food Chem; 2015 Jun; 63(23):5587-96. PubMed ID: 26006257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Based on the Virtual Screening of Multiple Pharmacophores, Docking and Molecular Dynamics Simulation Approaches toward the Discovery of Novel HPPD Inhibitors.
    Fu Y; Ye T; Liu YX; Wang J; Ye F
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32756361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the Association between Mesotrione Sensitivity and Conformational Change of 4-Hydroxyphenylpyruvate Dioxygenase via Free-Energy Analyses.
    Munei Y; Hengphasatporn K; Hori Y; Harada R; Shigeta Y
    J Agric Food Chem; 2023 Jun; 71(24):9528-9537. PubMed ID: 37277962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.