These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36068505)

  • 1. Three-Mediator Enhanced Collisions on an Ultramicroelectrode for Selective Identification of Single
    Chen Y; Liu Y; Wang D; Gao G; Zhi J
    Anal Chem; 2022 Sep; 94(37):12630-12637. PubMed ID: 36068505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cell settlement on the electrochemical collision behaviors of single microbes.
    Zhang H; Gao G; Chen Y; Lin L; Wang D; Fan Y; Liu Y; Zhao Q; Zhi J
    Anal Chim Acta; 2023 Dec; 1283():341949. PubMed ID: 37977779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae.
    Zhao J; Wang M; Yang Z; Wang Z; Wang H; Yang Z
    Anal Chim Acta; 2007 Jul; 597(1):67-74. PubMed ID: 17658314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox activity of single bacteria revealed by electrochemical collision technique.
    Chen Y; Wang D; Liu Y; Gao G; Zhi J
    Biosens Bioelectron; 2021 Mar; 176():112914. PubMed ID: 33353760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward the Detection and Identification of Single Bacteria by Electrochemical Collision Technique.
    Gao G; Wang D; Brocenschi R; Zhi J; Mirkin MV
    Anal Chem; 2018 Oct; 90(20):12123-12130. PubMed ID: 30209941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method.
    Baronian KH; Downard AJ; Lowen RK; Pasco N
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):108-13. PubMed ID: 12382050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae.
    Wang M; Zhao J; Yang Z; Du Z; Yang Z
    Bioelectrochemistry; 2007 Nov; 71(2):107-12. PubMed ID: 17499559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical detection of intracellular and cell membrane redox systems in Saccharomyces cerevisiae.
    Rawson FJ; Downard AJ; Baronian KH
    Sci Rep; 2014 Jun; 4():5216. PubMed ID: 24910017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical probing of intracellular redox processes in living yeast cells--application of redox polymer wiring in a microfluidic environment.
    Heiskanen A; Coman V; Kostesha N; Sabourin D; Haslett N; Baronian K; Gorton L; Dufva M; Emnéus J
    Anal Bioanal Chem; 2013 Apr; 405(11):3847-58. PubMed ID: 23371527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing bacterial detection and transport using redox impact electrochemistry.
    Shukla AK; Park D; Kim B
    Anal Chim Acta; 2024 Aug; 1319():342964. PubMed ID: 39122287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid Membrane Permeability of Synthetic Redox DMPC Liposomes Investigated by Single Electrochemical Collisions.
    Lebègue E; Barrière F; Bard AJ
    Anal Chem; 2020 Feb; 92(3):2401-2408. PubMed ID: 31916438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electrochemical microscopy based evaluation of influence of pH on bioelectrochemical activity of yeast cells - Saccharomyces cerevisiae.
    Ramanavicius A; Morkvenaite-Vilkonciene I; Kisieliute A; Petroniene J; Ramanaviciene A
    Colloids Surf B Biointerfaces; 2017 Jan; 149():1-6. PubMed ID: 27710849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning Electrochemical Microscopy Featuring Transient Current Signals in Carbon Nanopipets with Dilute or No Redox Mediator.
    Ma Y; Zhao Y; Liu R; Wang D
    Anal Chem; 2022 Aug; 94(32):11124-11128. PubMed ID: 35920511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlated Optical-Electrochemical Measurements Reveal Bidirectional Current Steps for Graphene Nanoplatelet Collisions at Ultramicroelectrodes.
    Pendergast AD; Renault C; Dick JE
    Anal Chem; 2021 Feb; 93(5):2898-2906. PubMed ID: 33491447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode.
    Lebègue E; Anderson CM; Dick JE; Webb LJ; Bard AJ
    Langmuir; 2015 Oct; 31(42):11734-9. PubMed ID: 26474107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends in single-impact electrochemistry for bacteria analysis.
    Smida H; Langlard A; Ameline D; Thobie-Gautier C; Boujtita M; Lebègue E
    Anal Bioanal Chem; 2023 Jul; 415(18):3717-3725. PubMed ID: 36754873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dichlorophenolindophenol, dichlorophenolindophenol-sulfonate, and cytochrome c on redox capacity and simultaneous net H+/K+ fluxes in aeroponically grown seedling roots of sunflower (Helianthus annuus L.): new evidence for a plasma membrane CN(-)-resistant redox chain.
    Garrido I; Espinosa F; Alvarez-Tinaut MC
    Protoplasma; 2001; 217(1-3):56-64. PubMed ID: 11732339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system.
    Matsumae Y; Takahashi Y; Ino K; Shiku H; Matsue T
    Anal Chim Acta; 2014 Sep; 842():20-6. PubMed ID: 25127647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction mechanisms between Saccharomyces cerevisiae and menadione and its application in toxicology study.
    Zhao J; Wang Z; Wang M; Wang H; He Q; Zhang H
    Talanta; 2008 Feb; 74(5):1686-91. PubMed ID: 18371837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct oxidation of NADPH by submitochondrial particles from Saccharomyces cerevisiae.
    Djavadi FH; Moradi M; Djavadi-Ohaniance L
    Eur J Biochem; 1980 Jun; 107(2):501-4. PubMed ID: 6995121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.