BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3606858)

  • 1. Irradiations of rabbit myofibrils with an ultraviolet microbeam. I. Effects of ultraviolet light on the myofibril components necessary for contraction.
    Wilson P; Forer A
    Biochem Cell Biol; 1987 Apr; 65(4):363-75. PubMed ID: 3606858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irradiations of rabbit myofibrils with an ultraviolet microbeam. II. Phalloidin protects actin in solution but not in myofibrils from depolymerization by ultraviolet light.
    Wilson P; Fuller E; Forer A
    Biochem Cell Biol; 1987 Apr; 65(4):376-85. PubMed ID: 3606859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of chromosome movement in crane fly spermatocytes by ultraviolet microbeam irradiation of individual chromosomal spindle fibres. II. Action spectra for stopping chromosome movement and for blocking ciliary beating and myofibril contractions.
    Sillers PJ; Forer A
    Can J Biochem; 1981 Sep; 59(9):777-92. PubMed ID: 7317825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of myofibrils by fluorophore-induced photo-oxidation.
    Knight P; Parsons N
    J Muscle Res Cell Motil; 1991 Apr; 12(2):183-91. PubMed ID: 1829462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the structure of muscle. III. Phase contrast and electron microscopy of dipteran flight muscle.
    Hodge AJ
    J Biophys Biochem Cytol; 1955 Jul; 1(4):361-80. PubMed ID: 13242599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical strength of sarcomere structures of skeletal myofibrils studied by submicromanipulation.
    Kayamori T; Miyake N; Akiyama N; Aimi M; Wakayama J; Kunioka Y; Yamada T
    Cell Struct Funct; 2006; 31(2):135-43. PubMed ID: 17110784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of phosphorylated myofibrils from gizzard smooth muscle.
    Yamaguchi M; Watanabe K
    J Biochem; 1980 Apr; 87(4):1209-14. PubMed ID: 6446550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ANALYSIS OF MUSCLE CONTRACTION BY ULTRAVIOLET MICROBEAM DISRUPTION OF SARCOMERE STRUCTURE.
    Stephens RE
    J Cell Biol; 1965 May; 25(2):129-39. PubMed ID: 19866657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopic observations on the interaction of the myosin head subunit with actin in myofibrils.
    Garamvölogyi N; Váczy K; Biró EN
    Acta Biochim Biophys Acad Sci Hung; 1976; 11(4):279-86. PubMed ID: 799893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural studies of glycerinated skeletal muscle. I. A-band length and cross-bridge period in ATP-contracted fibers.
    Dreizen P; Herman L; Berger JE
    Adv Exp Med Biol; 1984; 170():135-55. PubMed ID: 6741692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titin stiffness modifies the force-generating region of muscle sarcomeres.
    Li Y; Lang P; Linke WA
    Sci Rep; 2016 Apr; 6():24492. PubMed ID: 27079135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of Thick Filaments in Individual Sarcomeres Affects Force Production by Single Myofibrils.
    Mendoza AC; Rassier DE
    Biophys J; 2020 Apr; 118(8):1921-1929. PubMed ID: 32251620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-resolved microscopy reveals a muscle myosin motor-independent mechanism of molecular actin ordering during sarcomere maturation.
    Loison O; Weitkunat M; Kaya-Çopur A; Nascimento Alves C; Matzat T; Spletter ML; Luschnig S; Brasselet S; Lenne PF; Schnorrer F
    PLoS Biol; 2018 Apr; 16(4):e2004718. PubMed ID: 29702642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of muscle antigens in contracted myofibrils determined by fluorescein-labeled antibodies.
    TUNIK B; HOLTZER H
    J Biophys Biochem Cytol; 1961 Oct; 11(1):67-75. PubMed ID: 13923093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractile characteristics of sarcomeres arranged in series or mechanically isolated from myofibrils.
    Rassier DE; Pavlov I
    Adv Exp Med Biol; 2010; 682():123-40. PubMed ID: 20824523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments.
    Horowits R; Podolsky RJ
    J Cell Biol; 1987 Nov; 105(5):2217-23. PubMed ID: 3680378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light microscopy and image analysis of thin filament lengths utilizing dual probes on beef, chicken, and rabbit myofibrils.
    Ringkob TP; Swartz DR; Greaser ML
    J Anim Sci; 2004 May; 82(5):1445-53. PubMed ID: 15144085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical considerations on myofibril stiffness.
    Forcinito M; Epstein M; Herzog W
    Biophys J; 1997 Mar; 72(3):1278-86. PubMed ID: 9138573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative determination of myosin and actin in rabbit skeletal muscle.
    Yates LD; Greaser ML
    J Mol Biol; 1983 Jul; 168(1):123-41. PubMed ID: 6876172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical properties of myofibril and actomyosin suspensions. 1. Angular dependence of light scattering by myofibril suspensions and its changes under myofibril contraction.
    Shelud'ko NS
    Biochim Biophys Acta; 1990 May; 1038(3):315-21. PubMed ID: 2340291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.