These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36068613)

  • 1. Clinical application of a double-modified sulfated bacterial cellulose scaffold material loaded with FGFR2-modified adipose-derived stem cells in urethral reconstruction.
    Zhu Z; Yang J; Ji X; Wang Z; Dai C; Li S; Li X; Xie Y; Zheng Y; Lin J; Zhou L
    Stem Cell Res Ther; 2022 Sep; 13(1):463. PubMed ID: 36068613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urethra-inspired biomimetic scaffold: A therapeutic strategy to promote angiogenesis for urethral regeneration in a rabbit model.
    Wang B; Lv X; Li Z; Zhang M; Yao J; Sheng N; Lu M; Wang H; Chen S
    Acta Biomater; 2020 Jan; 102():247-258. PubMed ID: 31734410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia-preconditioned adipose-derived stem cells combined with scaffold promote urethral reconstruction by upregulation of angiogenesis and glycolysis.
    Wan X; Xie MK; Xu H; Wei ZW; Yao HJ; Wang Z; Zheng DC
    Stem Cell Res Ther; 2020 Dec; 11(1):535. PubMed ID: 33308306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model.
    Wang DJ; Li MY; Huang WT; Lu MH; Hu C; Li K; Qiu JG; Gao X
    Connect Tissue Res; 2015 Nov; 56(6):434-9. PubMed ID: 25943462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-Modified Bacterial Cellulose/Soy Protein Isolate Composites by Laser Hole Forming and Selective Oxidation Used for Urethral Repair.
    Yang J; Zhu Z; Liu Y; Zheng Y; Xie Y; Lin J; Cai T
    Biomacromolecules; 2022 Jan; 23(1):291-302. PubMed ID: 34874163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells.
    Griffin MF; Naderi N; Kalaskar DM; Seifalian AM; Butler PE
    Stem Cell Res Ther; 2019 Mar; 10(1):110. PubMed ID: 30922398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Adipose-Derived Stem Cell-Based Self-Assembled Scaffold under Hypoxia and Mechanical Stimulation for Urethral Tissue Engineering.
    Rashidbenam Z; Jasman MH; Tan GH; Goh EH; Fam XI; Ho CCK; Zainuddin ZM; Rajan R; Rani RA; Nor FM; Shuhaili MA; Kosai NR; Imran FH; Ng MH
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of the Urethral Mucosa Defect Model Using Adipose-Derived Stem Cell Sheets and Monitoring the Fate of Indocyanine Green-Labeled Sheets by Near Infrared-II.
    Liang Y; Yang C; Ye F; Cheng Z; Li W; Hu Y; Hu J; Zou L; Jiang H
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4909-4920. PubMed ID: 36201040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction.
    Lv X; Feng C; Liu Y; Peng X; Chen S; Xiao D; Wang H; Li Z; Xu Y; Lu M
    Theranostics; 2018; 8(11):3153-3163. PubMed ID: 29896309
    [No Abstract]   [Full Text] [Related]  

  • 11. Repair of bone defect by using vascular bundle implantation combined with Runx II gene-transfected adipose-derived stem cells and a biodegradable matrix.
    Han D; Li J
    Cell Tissue Res; 2013 Jun; 352(3):561-71. PubMed ID: 23604755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfated Chitosan Nanofibrous Scaffolds Seeded With Adipose Stem Cells Promote Ischemic Wound Healing in a Proangiogenic Strategy.
    Zhang X; Jiao Y; Shen T; Yu Y; Yu Z; Dang J; Chen L; Zhang Y; Shen G
    Cell Transplant; 2024; 33():9636897241226847. PubMed ID: 38288604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-structured bacterial cellulose loaded with hUSCs accelerate skin wound healing by promoting angiogenesis in rats.
    Cao YM; Liu MY; Xue ZW; Qiu Y; Li J; Wang Y; Wu QK
    Biochem Biophys Res Commun; 2019 Sep; 516(4):1167-1174. PubMed ID: 31284954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continued sustained release of VEGF by PLGA nanospheres modified BAMG stent for the anterior urethral reconstruction of rabbit.
    Wang JH; Xu YM; Fu Q; Song LJ; Li C; Zhang Q; Xie MK
    Asian Pac J Trop Med; 2013 Jun; 6(6):481-4. PubMed ID: 23711710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction: Clinical application of a double-modified sulfated bacterial cellulose scaffold material loaded with FGFR2-modified adipose-derived stem cells in urethral reconstruction.
    Zhu Z; Yang J; Ji X; Wang Z; Dai C; Li S; Li X; Xie Y; Zheng Y; Lin J; Zhou L
    Stem Cell Res Ther; 2024 Feb; 15(1):53. PubMed ID: 38409180
    [No Abstract]   [Full Text] [Related]  

  • 16. Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose.
    Zang S; Zhuo Q; Chang X; Qiu G; Wu Z; Yang G
    Carbohydr Polym; 2014 Apr; 104():158-65. PubMed ID: 24607173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.
    Huang JW; Lv XG; Li Z; Song LJ; Feng C; Xie MK; Li C; Li HB; Wang JH; Zhu WD; Chen SY; Wang HP; Xu YM
    Biomed Mater; 2015 Sep; 10(5):055005. PubMed ID: 26358641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering.
    Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110085. PubMed ID: 31546386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering of urethra using human vascular endothelial growth factor gene-modified bladder urothelial cells.
    Guan Y; Ou L; Hu G; Wang H; Xu Y; Chen J; Zhang J; Yu Y; Kong D
    Artif Organs; 2008 Feb; 32(2):91-9. PubMed ID: 18005271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-21 modification enhances the performance of adipose tissue-derived mesenchymal stem cells for counteracting urethral stricture formation.
    Feng Z; Chen H; Fu T; Zhang L; Liu Y
    J Cell Mol Med; 2018 Nov; 22(11):5607-5616. PubMed ID: 30179296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.