These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 36068997)
1. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. Capblancq T; Lachmuth S; Fitzpatrick MC; Keller SR New Phytol; 2023 Mar; 237(5):1590-1605. PubMed ID: 36068997 [TBL] [Abstract][Full Text] [Related]
2. Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae). Bashalkhanov S; Eckert AJ; Rajora OP Mol Ecol; 2013 Dec; 22(23):5877-89. PubMed ID: 24118331 [TBL] [Abstract][Full Text] [Related]
3. Risk of genetic maladaptation due to climate change in three major European tree species. Frank A; Howe GT; Sperisen C; Brang P; Clair JBS; Schmatz DR; Heiri C Glob Chang Biol; 2017 Dec; 23(12):5358-5371. PubMed ID: 28675600 [TBL] [Abstract][Full Text] [Related]
4. Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. Depardieu C; Gérardi S; Nadeau S; Parent GJ; Mackay J; Lenz P; Lamothe M; Girardin MP; Bousquet J; Isabel N Mol Ecol; 2021 Aug; 30(16):3898-3917. PubMed ID: 33586257 [TBL] [Abstract][Full Text] [Related]
5. Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. Holliday JA; Wang T; Aitken S G3 (Bethesda); 2012 Sep; 2(9):1085-93. PubMed ID: 22973546 [TBL] [Abstract][Full Text] [Related]
6. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes. Hornoy B; Pavy N; Gérardi S; Beaulieu J; Bousquet J Genome Biol Evol; 2015 Nov; 7(12):3269-85. PubMed ID: 26560341 [TBL] [Abstract][Full Text] [Related]
7. Genotypic variation and plasticity in climate-adaptive traits after range expansion and fragmentation of red spruce ( Prakash A; DeYoung S; Lachmuth S; Adams JL; Johnsen K; Butnor JR; Nelson DM; Fitzpatrick MC; Keller SR Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1848):20210008. PubMed ID: 35184589 [TBL] [Abstract][Full Text] [Related]
8. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Frank A; Sperisen C; Howe GT; Brang P; Walthert L; St Clair JB; Heiri C Ecology; 2017 Jan; 98(1):211-227. PubMed ID: 28052396 [TBL] [Abstract][Full Text] [Related]
9. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Fitzpatrick MC; Chhatre VE; Soolanayakanahally RY; Keller SR Mol Ecol Resour; 2021 Nov; 21(8):2749-2765. PubMed ID: 33683822 [TBL] [Abstract][Full Text] [Related]
10. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. Housset JM; Nadeau S; Isabel N; Depardieu C; Duchesne I; Lenz P; Girardin MP New Phytol; 2018 Apr; 218(2):630-645. PubMed ID: 29314017 [TBL] [Abstract][Full Text] [Related]
11. Molecular signatures of local adaptation to light in Norway spruce. Ranade SS; García-Gil MR Planta; 2021 Jan; 253(2):53. PubMed ID: 33511433 [TBL] [Abstract][Full Text] [Related]
12. Fine-scale geographic variation in photosynthetic-related traits of Picea glauca seedlings indicates local adaptation to climate. Benomar L; Lamhamedi MS; Villeneuve I; Rainville A; Beaulieu J; Bousquet J; Margolis HA Tree Physiol; 2015 Aug; 35(8):864-78. PubMed ID: 26116923 [TBL] [Abstract][Full Text] [Related]
13. Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees. Lepais O; Bacles CF Mol Ecol; 2014 Oct; 23(19):4671-3. PubMed ID: 25263401 [TBL] [Abstract][Full Text] [Related]
14. The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. Prunier J; Pelgas B; Gagnon F; Desponts M; Isabel N; Beaulieu J; Bousquet J BMC Genomics; 2013 Jun; 14():368. PubMed ID: 23724860 [TBL] [Abstract][Full Text] [Related]
15. Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Prunier J; Gérardi S; Laroche J; Beaulieu J; Bousquet J Mol Ecol; 2012 Sep; 21(17):4270-86. PubMed ID: 22805595 [TBL] [Abstract][Full Text] [Related]
16. The spatial scale of adaptation in a native annual plant and its implications for responses to climate change. Gorton AJ; Benning JW; Tiffin P; Moeller DA Evolution; 2022 Dec; 76(12):2916-2929. PubMed ID: 35880454 [TBL] [Abstract][Full Text] [Related]
17. Picturing local adaptation: Spectral and structural traits from drone remote sensing reveal clinal responses to climate transfer in common-garden trials of interior spruce (Picea engelmannii × glauca). Grubinger S; Coops NC; O'Neill GA Glob Chang Biol; 2023 Sep; 29(17):4842-4860. PubMed ID: 37424219 [TBL] [Abstract][Full Text] [Related]
18. Convergent local adaptation to climate in distantly related conifers. Yeaman S; Hodgins KA; Lotterhos KE; Suren H; Nadeau S; Degner JC; Nurkowski KA; Smets P; Wang T; Gray LK; Liepe KJ; Hamann A; Holliday JA; Whitlock MC; Rieseberg LH; Aitken SN Science; 2016 Sep; 353(6306):1431-1433. PubMed ID: 27708038 [TBL] [Abstract][Full Text] [Related]
19. Future carbon sequestration potential in a widespread transcontinental boreal tree species: Standing genetic variation matters! Robert E; Lenz P; Bergeron Y; de Lafontaine G; Bouriaud O; Isabel N; Girardin MP Glob Chang Biol; 2024 Jun; 30(6):e17347. PubMed ID: 38822663 [TBL] [Abstract][Full Text] [Related]
20. Genotypic variation in phenological plasticity: Reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Cooper HF; Grady KC; Cowan JA; Best RJ; Allan GJ; Whitham TG Glob Chang Biol; 2019 Jan; 25(1):187-200. PubMed ID: 30346108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]