BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36069153)

  • 1. Low-Temperature Barrier Discharge Plasma Modification of Scaffolds Based on Polylactic Acid.
    Laput OA; Vasenina IV; Shapovalova YG; Ochered'ko AN; Chernyavskii AV; Kudryashov SV; Kurzina IA
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41742-41750. PubMed ID: 36069153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Nitrogen Arc Discharge Plasma Treatment on Physicochemical Properties and Biocompatibility of PLA-Based Scaffolds.
    Laput OA; Vasenina IV; Korzhova AG; Bryuzgina AA; Khomutova UV; Tuyakova SG; Akhmadeev YH; Shugurov VV; Bolbasov EN; Tverdokhlebov SI; Chernyavskii AV; Kurzina IA
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation.
    Surucu S; Turkoglu Sasmazel H
    J Biomater Sci Polym Ed; 2016; 27(2):111-32. PubMed ID: 26494511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma surface modification of polylactic acid to promote interaction with fibroblasts.
    Jacobs T; Declercq H; De Geyter N; Cornelissen R; Dubruel P; Leys C; Beaurain A; Payen E; Morent R
    J Mater Sci Mater Med; 2013 Feb; 24(2):469-78. PubMed ID: 23124527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving physio-mechanical and biological properties of 3D-printed PLA scaffolds via in-situ argon cold plasma treatment.
    Zarei M; Sayedain SS; Askarinya A; Sabbaghi M; Alizadeh R
    Sci Rep; 2023 Aug; 13(1):14120. PubMed ID: 37644122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation.
    Almeida CR; Serra T; Oliveira MI; Planell JA; Barbosa MA; Navarro M
    Acta Biomater; 2014 Feb; 10(2):613-22. PubMed ID: 24211731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric pressure cold plasma versus wet-chemical surface treatments for carboxyl functionalization of polylactic acid: A first step toward covalent immobilization of bioactive molecules.
    Durán IR; Vanslambrouck S; Chevallier P; Hoesli CA; Laroche G
    Colloids Surf B Biointerfaces; 2020 May; 189():110847. PubMed ID: 32086024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric barrier discharge and jet type plasma surface modifications of hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds.
    Ozkan O; Turkoglu Sasmazel H
    J Biomater Appl; 2018 Apr; 32(9):1300-1313. PubMed ID: 29388455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug release control and anti-inflammatory effect of biodegradable polymer surface modified by gas phase chemical functional reaction.
    Bae I; Kim BH
    Biomed Mater; 2024 Feb; 19(2):. PubMed ID: 38364287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen Plasma Treatment of Composite Materials Based on Polylactic Acid and Hydroxyapatite.
    Khomutova UV; Korzhova AG; Bryuzgina AA; Laput OA; Vasenina IV; Akhmadeev YH; Shugurov VV; Azhazha II; Shapovalova YG; Chernyavskii AV; Kurzina IA
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells.
    Griffin MF; Naderi N; Kalaskar DM; Seifalian AM; Butler PE
    Stem Cell Res Ther; 2019 Mar; 10(1):110. PubMed ID: 30922398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering.
    Griffin M; Kalaskar D; Butler P
    J Nanobiotechnology; 2019 Apr; 17(1):51. PubMed ID: 30954085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering.
    Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110085. PubMed ID: 31546386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Argon plasma improves the tissue integration and angiogenesis of subcutaneous implants by modifying surface chemistry and topography.
    Griffin M; Palgrave R; Baldovino-Medrano VG; Butler PE; Kalaskar DM
    Int J Nanomedicine; 2018; 13():6123-6141. PubMed ID: 30349241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells.
    Caires HR; Esteves T; Quelhas P; Barbosa MA; Navarro M; Almeida CR
    J R Soc Interface; 2016 Sep; 13(122):. PubMed ID: 27628173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging.
    Song AY; Oh YA; Roh SH; Kim JH; Min SC
    J Food Sci; 2016 Jan; 81(1):E86-96. PubMed ID: 26646616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.
    Shah A; Shah S; Mani G; Wenke J; Agrawal M
    J Tissue Eng Regen Med; 2011 Apr; 5(4):301-12. PubMed ID: 21413158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a plasma synthesized polypyrrole coverage on polylactic acid/hydroxyapatite scaffolds for bone tissue engineering.
    Flores-Sánchez MG; Islas-Arteaga NC; Raya-Rivera AM; Esquiliano-Rendon DR; Morales-Corona J; Uribe-Juarez OE; Vivar-Velázquez FI; Ortiz-Vázquez GP; Olayo R
    J Biomed Mater Res A; 2021 Nov; 109(11):2199-2211. PubMed ID: 33904255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.
    Shen R; Xu W; Xue Y; Chen L; Ye H; Zhong E; Ye Z; Gao J; Yan Y
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):419-430. PubMed ID: 29661034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.