These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36069153)

  • 21. A strategy for controlling degradation in vitro of carbon fiber-reinforced polylactic acid composites (by combining fiber modification and pulsed electromagnetic fields).
    Zhang D; Qi J; Qiao S; Liu L; Wang B; Zhao Z
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):1964-1977. PubMed ID: 30141735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryogenic 3D printing of modified polylactic acid scaffolds with biomimetic nanofibrous architecture for bone tissue engineering.
    Xu D; Chen S; Xie C; Liang Q; Xiao X
    J Biomater Sci Polym Ed; 2022 Mar; 33(4):532-549. PubMed ID: 34704534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast incorporation of primary amine group into polylactide surface for improving C₂C₁₂ cell proliferation using nitrogen-based atmospheric-pressure plasma jets.
    Yang YW; Wu JY; Liu CT; Liao GC; Huang HY; Hsu RQ; Chiang MH; Wu JS
    J Biomed Mater Res A; 2014 Jan; 102(1):160-9. PubMed ID: 23613278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.
    Stankevich KS; Gudima A; Filimonov VD; Klüter H; Mamontova EM; Tverdokhlebov SI; Kzhyshkowska J
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():117-26. PubMed ID: 25842115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, synthesis, characterization, and cytotoxicity of PCL/PLGA scaffolds through plasma treatment in the presence of pyrrole for possible use in urethral tissue engineering.
    Sánchez-Pech JC; Rosales-Ibáñes R; Cauich-Rodriguez JV; Carrillo-Escalante HJ; Rodríguez-Navarrete A; Avila-Ortega A; Hernández-Sánchez F
    J Biomater Appl; 2020 Jan; 34(6):840-850. PubMed ID: 31630603
    [No Abstract]   [Full Text] [Related]  

  • 29. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds.
    Chen W; Nichols L; Brinkley F; Bohna K; Tian W; Priddy MW; Priddy LB
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111686. PubMed ID: 33545848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.
    Bhaskar B; Owen R; Bahmaee H; Wally Z; Sreenivasa Rao P; Reilly GC
    J Biomed Mater Res A; 2018 May; 106(5):1334-1340. PubMed ID: 29316238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elucidation of bio-inspired hydroxyapatie crystallization on oxygen-plasma modified 3D printed poly-caprolactone scaffolds.
    Murab S; Gruber SMS; Lin CJ; Whitlock P
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110529. PubMed ID: 32228954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer.
    Yoon YI; Park KE; Lee SJ; Park WH
    Biomed Res Int; 2013; 2013():309048. PubMed ID: 24381937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds.
    Elhattab K; Bhaduri SB; Lawrence JG; Sikder P
    ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.
    Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inflammatory response and biomechanical properties of coaxial scaffolds for engineered skin in vitro and post-grafting.
    Blackstone BN; Hahn JM; McFarland KL; DeBruler DM; Supp DM; Powell HM
    Acta Biomater; 2018 Oct; 80():247-257. PubMed ID: 30218778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Aparicio C; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():163-181. PubMed ID: 29025644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria.
    Kook MS; Roh HS; Kim BH
    Dent Mater J; 2018 Jul; 37(4):599-610. PubMed ID: 29731489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles.
    Saberi A; Behnamghader A; Aghabarari B; Yousefi A; Majda D; Huerta MVM; Mozafari M
    Int J Biol Macromol; 2022 May; 207():9-22. PubMed ID: 35181332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.
    Mi HY; Salick MR; Jing X; Jacques BR; Crone WC; Peng XF; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4767-76. PubMed ID: 24094186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning Cell Behavior on 3D Scaffolds Fabricated by Atmospheric Plasma-Assisted Additive Manufacturing.
    Cámara-Torres M; Sinha R; Scopece P; Neubert T; Lachmann K; Patelli A; Mota C; Moroni L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3631-3644. PubMed ID: 33448783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.