BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36069261)

  • 1. Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis.
    Kim J; Kim Y; Park K; Boeffel C; Choi HS; Taubert A; Wedel A
    Small; 2022 Oct; 18(40):e2203093. PubMed ID: 36069261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Injection and Energy Transfer of Surface-Engineered InP/ZnSe/ZnS Quantum Dots.
    Park J; Kim T; Kim D
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnF
    Li H; Zhang W; Bian Y; Ahn TK; Shen H; Ji B
    Nano Lett; 2022 May; 22(10):4067-4073. PubMed ID: 35536635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
    Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K
    Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes.
    Wu Q; Cao F; Wang S; Wang Y; Sun Z; Feng J; Liu Y; Wang L; Cao Q; Li Y; Wei B; Wong WY; Yang X
    Adv Sci (Weinh); 2022 Jul; 9(21):e2200959. PubMed ID: 35618484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes.
    Shen H; Cao W; Shewmon NT; Yang C; Li LS; Xue J
    Nano Lett; 2015 Feb; 15(2):1211-6. PubMed ID: 25580801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient performance of InP and InP/ZnS quantum dots for photocatalytic degradation of toxic aquatic pollutants.
    Abbasi M; Aziz R; Rafiq MT; Bacha AUR; Ullah Z; Ghaffar A; Mustafa G; Nabi I; Hayat MT
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):19986-20000. PubMed ID: 38368301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Electroluminescence via a Nanohybrid Material Consisting of Aromatic Ligand-Modified InP Quantum Dots and an Electron-Blocking Polymer as the Single Active Layer in Quantum Dot-LEDs.
    Choi HS; Janietz S; Roddatis V; Geßner A; Wedel A; Kim J; Kim Y
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption.
    Cooper JK; Franco AM; Gul S; Corrado C; Zhang JZ
    Langmuir; 2011 Jul; 27(13):8486-93. PubMed ID: 21631120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed
    Saeboe AM; Nikiforov AY; Toufanian R; Kays JC; Chern M; Casas JP; Han K; Piryatinski A; Jones D; Dennis AM
    Nano Lett; 2021 Apr; 21(7):3271-3279. PubMed ID: 33755481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InP/ZnS Quantum Dots Cause Inflammatory Response in Macrophages Through Endoplasmic Reticulum Stress and Oxidative stress.
    Chen S; Chen Y; Chen Y; Yao Z
    Int J Nanomedicine; 2019; 14():9577-9586. PubMed ID: 31824152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and In vivo toxicity analysis of zinc selenium/zinc sulfide (ZnSe/ZnS) quantum dots.
    Reshma VG; Sabareeswaran A; Rajeev KS; Mohanan PV
    Food Chem Toxicol; 2020 Nov; 145():111718. PubMed ID: 32890689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy.
    Ranjbar-Navazi Z; Eskandani M; Johari-Ahar M; Nemati A; Akbari H; Davaran S; Omidi Y
    J Drug Target; 2018 Mar; 26(3):267-277. PubMed ID: 28795849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes.
    Ham KM; Kim M; Bock S; Kim J; Kim W; Jung HS; An J; Song H; Kim JW; Kim HM; Rho WY; Lee SH; Park SM; Kim DE; Jun BH
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Brightness Matched Indium Phosphide Quantum Dots.
    Toufanian R; Chern M; Kong VH; Dennis AM
    Chem Mater; 2021 Mar; 33(6):1964-1975. PubMed ID: 34219920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semitransparent quantum dot light-emitting diodes by cadmium-free colloidal quantum dots.
    Kim Y; Ippen C; Greco T; Oh MS; Chul JH; Lee J; Wedel A; Kim J
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8636-40. PubMed ID: 25958576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS
    Delices A; Moodelly D; Hurot C; Hou Y; Ling WL; Saint-Pierre C; Gasparutto D; Nogues G; Reiss P; Kheng K
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44026-44038. PubMed ID: 32840358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narrow Intrinsic Line Widths and Electron-Phonon Coupling of InP Colloidal Quantum Dots.
    Berkinsky DB; Proppe AH; Utzat H; Krajewska CJ; Sun W; Šverko T; Yoo JJ; Chung H; Won YH; Kim T; Jang E; Bawendi MG
    ACS Nano; 2023 Feb; 17(4):3598-3609. PubMed ID: 36758155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2008 May; 24(10):5514-20. PubMed ID: 18412378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.