BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 36069455)

  • 1. MDITRE: Scalable and Interpretable Machine Learning for Predicting Host Status from Temporal Microbiome Dynamics.
    Maringanti VS; Bucci V; Gerber GK
    mSystems; 2022 Oct; 7(5):e0013222. PubMed ID: 36069455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MITRE: inferring features from microbiota time-series data linked to host status.
    Bogart E; Creswell R; Gerber GK
    Genome Biol; 2019 Sep; 20(1):186. PubMed ID: 31477162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatic and Statistical Analysis of Microbiome Data.
    Kim Y
    Methods Mol Biol; 2023; 2629():183-229. PubMed ID: 36929079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human host status inference from temporal microbiome changes via recurrent neural networks.
    Chen X; Liu L; Zhang W; Yang J; Wong KC
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34151933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems.
    Topçuoğlu BD; Lesniak NA; Ruffin MT; Wiens J; Schloss PD
    mBio; 2020 Jun; 11(3):. PubMed ID: 32518182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring thematic structure and predicted functionality of 16S rRNA amplicon data.
    Woloszynek S; Mell JC; Zhao Z; Simpson G; O'Connor MP; Rosen GL
    PLoS One; 2019; 14(12):e0219235. PubMed ID: 31825995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution characterization of the human microbiome.
    Noecker C; McNally CP; Eng A; Borenstein E
    Transl Res; 2017 Jan; 179():7-23. PubMed ID: 27513210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. animalcules: interactive microbiome analytics and visualization in R.
    Zhao Y; Federico A; Faits T; Manimaran S; Segrè D; Monti S; Johnson WE
    Microbiome; 2021 Mar; 9(1):76. PubMed ID: 33775256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut Microbes Meet Machine Learning: The Next Step towards Advancing Our Understanding of the Gut Microbiome in Health and Disease.
    Giuffrè M; Moretti R; Tiribelli C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-based microbiome representation enhances host phenotype classification.
    Deschênes T; Tohoundjona FWE; Plante PL; Di Marzo V; Raymond F
    mSystems; 2023 Aug; 8(4):e0053123. PubMed ID: 37404032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a metagenomics machine learning interpretable model for understanding the transition from adenoma to colorectal cancer.
    Casimiro-Soriguer CS; Loucera C; Peña-Chilet M; Dopazo J
    Sci Rep; 2022 Jan; 12(1):450. PubMed ID: 35013454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordering taxa in image convolution networks improves microbiome-based machine learning accuracy.
    Shtossel O; Isakov H; Turjeman S; Koren O; Louzoun Y
    Gut Microbes; 2023; 15(1):2224474. PubMed ID: 37345233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of
    Hugerth LW; Pereira M; Zha Y; Seifert M; Kaldhusdal V; Boulund F; Krog MC; Bashir Z; Hamsten M; Fransson E; Svarre-Nielsen H; Schuppe-Koistinen I; Engstrand L
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning.
    Dhungel E; Mreyoud Y; Gwak HJ; Rajeh A; Rho M; Ahn TH
    BMC Bioinformatics; 2021 Jan; 22(1):25. PubMed ID: 33461494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental metagenomics and ribosomal profiling of the human skin microbiome.
    Ferretti P; Farina S; Cristofolini M; Girolomoni G; Tett A; Segata N
    Exp Dermatol; 2017 Mar; 26(3):211-219. PubMed ID: 27623553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MaLiAmPi enables generalizable and taxonomy-independent microbiome features from technically diverse 16S-based microbiome studies.
    Minot SS; Garb B; Roldan A; Tang AS; Oskotsky TT; Rosenthal C; Hoffman NG; Sirota M; Golob JL
    Cell Rep Methods; 2023 Nov; 3(11):100639. PubMed ID: 37939711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence and metagenomics in intestinal diseases.
    Lin Y; Wang G; Yu J; Sung JJY
    J Gastroenterol Hepatol; 2021 Apr; 36(4):841-847. PubMed ID: 33880764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome.
    Laudadio I; Fulci V; Palone F; Stronati L; Cucchiara S; Carissimi C
    OMICS; 2018 Apr; 22(4):248-254. PubMed ID: 29652573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-Apo improves accuracy of 16S-amplicon-based prediction of microbiome function.
    Jing G; Zhang Y; Cui W; Liu L; Xu J; Su X
    BMC Genomics; 2021 Jan; 22(1):9. PubMed ID: 33407112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiome-based disease prediction with multimodal variational information bottlenecks.
    Grazioli F; Siarheyeu R; Alqassem I; Henschel A; Pileggi G; Meiser A
    PLoS Comput Biol; 2022 Apr; 18(4):e1010050. PubMed ID: 35404958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.