BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36069455)

  • 21. MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks.
    Lo C; Marculescu R
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):314. PubMed ID: 31216991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data.
    Dhariwal A; Chong J; Habib S; King IL; Agellon LB; Xia J
    Nucleic Acids Res; 2017 Jul; 45(W1):W180-W188. PubMed ID: 28449106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights.
    Pasolli E; Truong DT; Malik F; Waldron L; Segata N
    PLoS Comput Biol; 2016 Jul; 12(7):e1004977. PubMed ID: 27400279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic Phenotypes as Potential Biomarkers for Linking Gut Microbiome With Inflammatory Bowel Diseases.
    Iablokov SN; Klimenko NS; Efimova DA; Shashkova T; Novichkov PS; Rodionov DA; Tyakht AV
    Front Mol Biosci; 2020; 7():603740. PubMed ID: 33537340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic disease prediction from human gut metagenomic data using boosting GraphSAGE.
    Syama K; Jothi JAA; Khanna N
    BMC Bioinformatics; 2023 Mar; 24(1):126. PubMed ID: 37003965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Obtaining deeper insights into microbiome diversity using a simple method to block host and nontargets in amplicon sequencing.
    Mayer T; Mari A; Almario J; Murillo-Roos M; Syed M Abdullah H; Dombrowski N; Hacquard S; Kemen EM; Agler MT
    Mol Ecol Resour; 2021 Aug; 21(6):1952-1965. PubMed ID: 33905604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Instruction of microbiome taxonomic profiling based on 16S rRNA sequencing.
    Kim H; Kim S; Jung S
    J Microbiol; 2020 Mar; 58(3):193-205. PubMed ID: 32108315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. R.ROSETTA: an interpretable machine learning framework.
    Garbulowski M; Diamanti K; Smolińska K; Baltzer N; Stoll P; Bornelöv S; Øhrn A; Feuk L; Komorowski J
    BMC Bioinformatics; 2021 Mar; 22(1):110. PubMed ID: 33676405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data.
    Chen JC; Tyler AD
    Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox.
    Wirbel J; Zych K; Essex M; Karcher N; Kartal E; Salazar G; Bork P; Sunagawa S; Zeller G
    Genome Biol; 2021 Mar; 22(1):93. PubMed ID: 33785070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning methods for microbiome studies.
    Namkung J
    J Microbiol; 2020 Mar; 58(3):206-216. PubMed ID: 32108316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpretable machine learning framework reveals microbiome features of oral disease.
    Yan Y; Bao X; Chen B; Li Y; Yin J; Zhu G; Li Q
    Microbiol Res; 2022 Dec; 265():127198. PubMed ID: 36126491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host DNA depletion efficiency of microbiome DNA enrichment methods in infected tissue samples.
    Heravi FS; Zakrzewski M; Vickery K; Hu H
    J Microbiol Methods; 2020 Mar; 170():105856. PubMed ID: 32007505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. It's all relative: analyzing microbiome data as compositions.
    Gloor GB; Wu JR; Pawlowsky-Glahn V; Egozcue JJ
    Ann Epidemiol; 2016 May; 26(5):322-9. PubMed ID: 27143475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HMP16SData: Efficient Access to the Human Microbiome Project Through Bioconductor.
    Schiffer L; Azhar R; Shepherd L; Ramos M; Geistlinger L; Huttenhower C; Dowd JB; Segata N; Waldron L
    Am J Epidemiol; 2019 Jun; 188(6):1023-1026. PubMed ID: 30649166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences.
    Carrieri AP; Haiminen N; Maudsley-Barton S; Gardiner LJ; Murphy B; Mayes AE; Paterson S; Grimshaw S; Winn M; Shand C; Hadjidoukas P; Rowe WPM; Hawkins S; MacGuire-Flanagan A; Tazzioli J; Kenny JG; Parida L; Hoptroff M; Pyzer-Knapp EO
    Sci Rep; 2021 Feb; 11(1):4565. PubMed ID: 33633172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. It takes guts to learn: machine learning techniques for disease detection from the gut microbiome.
    Curry KD; Nute MG; Treangen TJ
    Emerg Top Life Sci; 2021 Dec; 5(6):815-827. PubMed ID: 34779841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current challenges and best-practice protocols for microbiome analysis.
    Bharti R; Grimm DG
    Brief Bioinform; 2021 Jan; 22(1):178-193. PubMed ID: 31848574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MCaVoH: A toolkit for mining, classification and visualization of human microbiota.
    Nisar M; Noureen N; Fazal S; Qadir MA
    J Microbiol Methods; 2015 Oct; 117():28-35. PubMed ID: 26193336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LotuS: an efficient and user-friendly OTU processing pipeline.
    Hildebrand F; Tadeo R; Voigt AY; Bork P; Raes J
    Microbiome; 2014 Sep; 2(1):30. PubMed ID: 27367037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.