These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 36069673)
1. Elucidation of the atomic-scale processes of dissociative adsorption and spillover of hydrogen on the single atom alloy catalyst Pd/Cu(111). Osada W; Tanaka S; Mukai K; Kawamura M; Choi Y; Ozaki F; Ozaki T; Yoshinobu J Phys Chem Chem Phys; 2022 Sep; 24(36):21705-21713. PubMed ID: 36069673 [TBL] [Abstract][Full Text] [Related]
2. Sustained Hydrogen Spillover on Pt/Cu(111) Single-Atom Alloy: Dynamic Insights into Gas-Induced Chemical Processes. Gu K; Lin S Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202312796. PubMed ID: 37830406 [TBL] [Abstract][Full Text] [Related]
3. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Boucher MB; Zugic B; Cladaras G; Kammert J; Marcinkowski MD; Lawton TJ; Sykes EC; Flytzani-Stephanopoulos M Phys Chem Chem Phys; 2013 Aug; 15(29):12187-96. PubMed ID: 23793350 [TBL] [Abstract][Full Text] [Related]
4. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Cao X; Fu Q; Luo Y Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397 [TBL] [Abstract][Full Text] [Related]
6. The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS. Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J J Chem Phys; 2020 Jan; 152(4):044703. PubMed ID: 32007070 [TBL] [Abstract][Full Text] [Related]
7. Effect of Bystander Hydrogen Atoms on Hydrogen Desorption on Single-Atom Alloy Surfaces: Insights from Simulated Temperature-Programmed Desorption Spectra. Liu X; Wei Y; Fu Q; Shen X J Phys Chem Lett; 2024 May; 15(19):5130-5136. PubMed ID: 38709226 [TBL] [Abstract][Full Text] [Related]
8. Zn-Promoted Selective Gas-Phase Hydrogenation of Tertiary and Secondary C4 Alkynols over Supported Pd. González-Fernández A; Berenguer-Murcia Á; Cazorla-Amorós D; Cárdenas-Lizana F ACS Appl Mater Interfaces; 2020 Jun; 12(25):28158-28168. PubMed ID: 32479052 [TBL] [Abstract][Full Text] [Related]
9. Controlling a spillover pathway with the molecular cork effect. Marcinkowski MD; Jewell AD; Stamatakis M; Boucher MB; Lewis EA; Murphy CJ; Kyriakou G; Sykes EC Nat Mater; 2013 Jun; 12(6):523-8. PubMed ID: 23603849 [TBL] [Abstract][Full Text] [Related]
10. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts. Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456 [TBL] [Abstract][Full Text] [Related]
11. Roughening of Copper (100) at Elevated CO Pressure: Cu Adatom and Cluster Formation Enable CO Dissociation. Roiaz M; Falivene L; Rameshan C; Cavallo L; Kozlov SM; Rupprechter G J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(13):8112-8121. PubMed ID: 30976376 [TBL] [Abstract][Full Text] [Related]
12. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst. Takeyasu K; Sawaki Y; Imabayashi T; Putra SEM; Halim HH; Quan J; Hamamoto Y; Hamada I; Morikawa Y; Kondo T; Fujitani T; Nakamura J J Am Chem Soc; 2022 Jul; 144(27):12158-12166. PubMed ID: 35762507 [TBL] [Abstract][Full Text] [Related]
13. The influence of palladium on the hydrogenation of acetylene on Ag(111). Molina DL; Muir M; Abdel-Rahman MK; Trenary M J Chem Phys; 2021 May; 154(18):184701. PubMed ID: 34241009 [TBL] [Abstract][Full Text] [Related]
14. H2 dissociation on individual Pd atoms deposited on Cu(111). Ramos M; Martínez AE; Busnengo HF Phys Chem Chem Phys; 2012 Jan; 14(1):303-10. PubMed ID: 22083017 [TBL] [Abstract][Full Text] [Related]
15. Deciphering the Factors Controlling Hydrogen and Methyl Spillover upon Methane Dissociation on Rh/Cu(111) Single-Atom Alloy. Gu K; Guo H; Lin S Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202405371. PubMed ID: 38965044 [TBL] [Abstract][Full Text] [Related]
16. Ag on Pt(111): Changes in Electronic and CO Adsorption Properties upon PtAg/Pt(111) Monolayer Surface Alloy Formation. Diemant T; Schüttler KM; Behm RJ Chemphyschem; 2015 Oct; 16(14):2943-52. PubMed ID: 26272080 [TBL] [Abstract][Full Text] [Related]
17. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO Mori K; Sano T; Kobayashi H; Yamashita H J Am Chem Soc; 2018 Jul; 140(28):8902-8909. PubMed ID: 29932642 [TBL] [Abstract][Full Text] [Related]
18. The synergistic effects of Cu clusters and In Chen Y; Zhai Z; Liu J; Zhang J; Geng Z; Lyu H Phys Chem Chem Phys; 2019 Nov; 21(43):23906-23915. PubMed ID: 31657393 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of a binary alloy nanoparticle catalyst with an immiscible combination of Rh and Cu assisted by hydrogen spillover on a TiO Masuda S; Shun K; Mori K; Kuwahara Y; Yamashita H Chem Sci; 2020 Apr; 11(16):4194-4203. PubMed ID: 34122882 [TBL] [Abstract][Full Text] [Related]
20. Achieving Ultra-High Selectivity to Hydrogen Production from Formic Acid on Pd-Ag Alloys. Karatok M; Ngan HT; Jia X; O'Connor CR; Boscoboinik JA; Stacchiola DJ; Sautet P; Madix RJ J Am Chem Soc; 2023 Mar; 145(9):5114-5124. PubMed ID: 36848504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]