These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36069763)

  • 21. Evolution of Optimized Hydride Transfer Reaction and Overall Enzyme Turnover in Human Dihydrofolate Reductase.
    Li J; Lin J; Kohen A; Singh P; Francis K; Cheatum CM
    Biochemistry; 2021 Dec; 60(50):3822-3828. PubMed ID: 34875176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the Met
    Mhashal AR; Vardi-Kilshtain A; Kohen A; Major DT
    J Biol Chem; 2017 Aug; 292(34):14229-14239. PubMed ID: 28620051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein motions during catalysis by dihydrofolate reductases.
    Allemann RK; Evans RM; Tey LH; Maglia G; Pang J; Rodriguez R; Shrimpton PJ; Swanwick RS
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1317-21. PubMed ID: 16873119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility.
    Mhashal AR; Pshetitsky Y; Eitan R; Cheatum CM; Kohen A; Major DT
    J Phys Chem B; 2018 Aug; 122(33):8006-8017. PubMed ID: 30040418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of water in the catalytic cycle of E. coli dihydrofolate reductase.
    Shrimpton P; Allemann RK
    Protein Sci; 2002 Jun; 11(6):1442-51. PubMed ID: 12021443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Active Site Loop Dynamics in Mediating Ligand Release from
    Singh A; Fenwick RB; Dyson HJ; Wright PE
    Biochemistry; 2021 Sep; 60(35):2663-2671. PubMed ID: 34428034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydride transfer by dihydrofolate reductase. Causes and consequences of the wide range of rates exhibited by bacterial and vertebrate enzymes.
    Beard WA; Appleman JR; Delcamp TJ; Freisheim JH; Blakley RL
    J Biol Chem; 1989 Jun; 264(16):9391-9. PubMed ID: 2498330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductases.
    Luk LY; Loveridge EJ; Allemann RK
    J Am Chem Soc; 2014 May; 136(19):6862-5. PubMed ID: 24779446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase.
    Fan Y; Cembran A; Ma S; Gao J
    Biochemistry; 2013 Mar; 52(12):2036-49. PubMed ID: 23297871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism.
    Osborne MJ; Schnell J; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2001 Aug; 40(33):9846-59. PubMed ID: 11502178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates.
    Rajagopalan PT; Lutz S; Benkovic SJ
    Biochemistry; 2002 Oct; 41(42):12618-28. PubMed ID: 12379104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of pH on hydride transfer by Escherichia coli dihydrofolate reductase.
    Loveridge EJ; Allemann RK
    Chembiochem; 2011 May; 12(8):1258-62. PubMed ID: 21506230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis.
    Bhabha G; Lee J; Ekiert DC; Gam J; Wilson IA; Dyson HJ; Benkovic SJ; Wright PE
    Science; 2011 Apr; 332(6026):234-8. PubMed ID: 21474759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escherichia coli dihydrofolate reductase catalyzed proton and hydride transfers: temporal order and the roles of Asp27 and Tyr100.
    Liu CT; Francis K; Layfield JP; Huang X; Hammes-Schiffer S; Kohen A; Benkovic SJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18231-6. PubMed ID: 25453098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR studies of the interaction of a type II dihydrofolate reductase with pyridine nucleotides reveal unexpected phosphatase and reductase activity.
    Pitcher WH; DeRose EF; Mueller GA; Howell EE; London RE
    Biochemistry; 2003 Sep; 42(38):11150-60. PubMed ID: 14503865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase.
    Antikainen NM; Smiley RD; Benkovic SJ; Hammes GG
    Biochemistry; 2005 Dec; 44(51):16835-43. PubMed ID: 16363797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.