BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36069904)

  • 1. Opportunistic Pathogens in Cystic Fibrosis: Epidemiology and Pathogenesis of Lung Infection.
    Blanchard AC; Waters VJ
    J Pediatric Infect Dis Soc; 2022 Sep; 11(Supplement_2):S3-S12. PubMed ID: 36069904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cystic fibrosis lung microbiome.
    Surette MG
    Ann Am Thorac Soc; 2014 Jan; 11 Suppl 1():S61-5. PubMed ID: 24437409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathophysiology and management of pulmonary infections in cystic fibrosis.
    Gibson RL; Burns JL; Ramsey BW
    Am J Respir Crit Care Med; 2003 Oct; 168(8):918-51. PubMed ID: 14555458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The microbiome and emerging pathogens in cystic fibrosis and non-cystic fibrosis bronchiectasis.
    Green H; Jones AM
    Semin Respir Crit Care Med; 2015 Apr; 36(2):225-35. PubMed ID: 25826590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Emerging bacteria in cystic fibrosis and non-cystic fibrosis bronchiectasis from a microbiologist's perspective].
    Menetrey Q; Dupont C; Chiron R; Marchandin H
    Rev Mal Respir; 2020 Sep; 37(7):561-571. PubMed ID: 32684338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denitrification by cystic fibrosis pathogens - Stenotrophomonas maltophilia is dormant in sputum.
    Kolpen M; Kragh KN; Bjarnsholt T; Line L; Hansen CR; Dalbøge CS; Hansen N; Kühl M; Høiby N; Jensen PØ
    Int J Med Microbiol; 2015 Jan; 305(1):1-10. PubMed ID: 25441256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Stenotrophomonas maltophilia epidemiology in a French cystic fibrosis center.
    Capaldo C; Beauruelle C; Saliou P; Rault G; Ramel S; Héry-Arnaud G
    Respir Med Res; 2020 Nov; 78():100757. PubMed ID: 32759054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas aeruginosa Promotes Persistence of Stenotrophomonas maltophilia via Increased Adherence to Depolarized Respiratory Epithelium.
    McDaniel MS; Lindgren NR; Billiot CE; Valladares KN; Sumpter NA; Swords WE
    Microbiol Spectr; 2023 Feb; 11(1):e0384622. PubMed ID: 36472421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis-data from the European cystic fibrosis society patient registry.
    Hatziagorou E; Orenti A; Drevinek P; Kashirskaya N; Mei-Zahav M; De Boeck K; ;
    J Cyst Fibros; 2020 May; 19(3):376-383. PubMed ID: 31492646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonality of acquisition of respiratory bacterial pathogens in young children with cystic fibrosis.
    Psoter KJ; De Roos AJ; Wakefield J; Mayer JD; Rosenfeld M
    BMC Infect Dis; 2017 Jun; 17(1):411. PubMed ID: 28599639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenging and emerging pathogens in cystic fibrosis.
    de Vrankrijker AM; Wolfs TF; van der Ent CK
    Paediatr Respir Rev; 2010 Dec; 11(4):246-54. PubMed ID: 21109184
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Menetrey Q; Sorlin P; Jumas-Bilak E; Chiron R; Dupont C; Marchandin H
    Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33919046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory bacterial infections in cystic fibrosis.
    Ciofu O; Hansen CR; Høiby N
    Curr Opin Pulm Med; 2013 May; 19(3):251-8. PubMed ID: 23449384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary infections in patients with cystic fibrosis.
    Rajan S; Saiman L
    Semin Respir Infect; 2002 Mar; 17(1):47-56. PubMed ID: 11891518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the Microbial Constituents of the Home Environment of Individuals with Cystic Fibrosis (CF) and Their Association with Lower Airways Infections.
    Heirali A; McKeon S; Purighalla S; Storey DG; Rossi L; Costilhes G; Drews SJ; Rabin HR; Surette MG; Parkins MD
    PLoS One; 2016; 11(2):e0148534. PubMed ID: 26859493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperativity between Stenotrophomonas maltophilia and Pseudomonas aeruginosa during Polymicrobial Airway Infections.
    McDaniel MS; Schoeb T; Swords WE
    Infect Immun; 2020 Mar; 88(4):. PubMed ID: 31932329
    [No Abstract]   [Full Text] [Related]  

  • 17. Air pollution exposure is associated with MRSA acquisition in young U.S. children with cystic fibrosis.
    Psoter KJ; De Roos AJ; Wakefield J; Mayer JD; Rosenfeld M
    BMC Pulm Med; 2017 Jul; 17(1):106. PubMed ID: 28750627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of random amplified polymorphic DNA PCR to examine epidemiology of Stenotrophomonas maltophilia and Achromobacter (Alcaligenes) xylosoxidans from patients with cystic fibrosis.
    Krzewinski JW; Nguyen CD; Foster JM; Burns JL
    J Clin Microbiol; 2001 Oct; 39(10):3597-602. PubMed ID: 11574579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New treatments for emerging cystic fibrosis pathogens other than Pseudomonas.
    Waters V
    Curr Pharm Des; 2012; 18(5):696-725. PubMed ID: 22229574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infection control recommendations for patients with cystic fibrosis: Microbiology, important pathogens, and infection control practices to prevent patient-to-patient transmission.
    Saiman L; Siegel J;
    Am J Infect Control; 2003 May; 31(3 Suppl):S1-62. PubMed ID: 12762292
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.