These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3606993)

  • 1. Mechanism of renaturation of a large protein, aspartokinase-homoserine dehydrogenase.
    Vaucheret H; Signon L; Le Bras G; Garel JR
    Biochemistry; 1987 May; 26(10):2785-90. PubMed ID: 3606993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding of aspartokinase-homoserine dehydrogenase I is dominated by tertiary interactions.
    Müller K; Garel JR
    Biochemistry; 1984 Feb; 23(4):655-60. PubMed ID: 6370303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent folding regions in aspartokinase-homoserine dehydrogenase.
    Dautry-Varsat A; Garel JR
    Biochemistry; 1981 Mar; 20(5):1396-401. PubMed ID: 7225337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E. coli aspartokinase II-homoserine dehydrogenase II polypeptide chain has a triglobular structure.
    Belfaiza J; Fazel A; Müller K; Cohen GN
    Biochem Biophys Res Commun; 1984 Aug; 123(1):16-20. PubMed ID: 6383377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise inactivation of Escherichia coli aspartokinase-homoserine dehydrogenase I.
    Müller K; Garel JR
    Biochemistry; 1984 Feb; 23(4):651-4. PubMed ID: 6370302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolysis of the bifunctional methionine-repressible aspartokinase II-homoserine dehydrogenase II of Escherichia coli K12. Production of an active homoserine dehydrogenase fragment.
    Dautry-Varsat A; Cohen GN
    J Biol Chem; 1977 Nov; 252(21):7685-9. PubMed ID: 334767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible dissociation of aspartokinase I/homoserine dehydrogenase I from Escherichia coli K 12. The active species is the tetramer.
    Veron M; Guillou Y; Fazel A; Cohen GN
    Eur J Biochem; 1985 Sep; 151(3):521-4. PubMed ID: 3896789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential folding of a bifunctional allosteric protein.
    Garel JR; Dautry-Varsat A
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3379-83. PubMed ID: 6774337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A very fast phase in the refolding of disulfide-intact ribonuclease A: implications for the refolding and unfolding pathways.
    Houry WA; Rothwarf DM; Scheraga HA
    Biochemistry; 1994 Mar; 33(9):2516-30. PubMed ID: 8117713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Kinetic and spectroscopic effects upon binding of serine and threonine.
    Costrejean JM; Truffa-Bachi P
    J Biol Chem; 1977 Aug; 252(15):5332-6. PubMed ID: 328500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt(III) labeled aspartokinase-homoserine dehydrogenase of Escherichia coli.
    Ryzewski C; Takahashi MT
    Biochemistry; 1975 Oct; 14(20):4482-6. PubMed ID: 1100105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric transition of aspartokinase I-homoserine dehydrogenase I studied by time-resolved fluorescence.
    Jullien M; Baudet S; Rodier F; Le Bras G
    Biochimie; 1988 Dec; 70(12):1807-14. PubMed ID: 3150686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reassociation of dimeric cytoplasmic malate dehydrogenase is determined by slow and very slow folding reactions.
    Rudolph R; Fuchs I; Jaenicke R
    Biochemistry; 1986 Apr; 25(7):1662-9. PubMed ID: 3707900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A triglobular model for the polypeptide chain of aspartokinase I-homoserine dehydrogenase I of Escherichia coli.
    Fazel A; Müller K; Le Bras G; Garel JR; Véron M; Cohen GN
    Biochemistry; 1983 Jan; 22(1):158-65. PubMed ID: 6338915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an unfolding intermediate and kinetic analysis of guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide.
    Steer BA; Merrill AR
    Biochemistry; 1997 Mar; 36(10):3037-46. PubMed ID: 9062135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization.
    Schmid FX; Baldwin RL
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4764-8. PubMed ID: 283390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Carboxymethylation of the enzyme: threonine binding and inhibition are functionally dissociable.
    Fontan E; Truffa-Bachi P
    J Biol Chem; 1978 Apr; 253(8):2754-7. PubMed ID: 344322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible unfolding of fructose 6-phosphate, 2-kinase:fructose 2,6-bisphosphatase.
    Tominaga N; Jameson DM; Uyeda K
    Protein Sci; 1994 Aug; 3(8):1245-52. PubMed ID: 7987219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.