These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 3607005)
61. Fluorescence indicates a calcium-dependent interaction between the lipopeptide antibiotic LY146032 and phospholipid membranes. Lakey JH; Ptak M Biochemistry; 1988 Jun; 27(13):4639-45. PubMed ID: 2844233 [TBL] [Abstract][Full Text] [Related]
62. Lipid bilayer partitioning and stability of camptothecin drugs. Burke TG; Mishra AK; Wani MC; Wall ME Biochemistry; 1993 May; 32(20):5352-64. PubMed ID: 8499440 [TBL] [Abstract][Full Text] [Related]
63. The pressure-induced structural change of bovine alpha-lactalbumin as studied by a fluorescence hydrophobic probe. Tanaka N; Nakajima K; Kunugi S Int J Pept Protein Res; 1996 Sep; 48(3):259-64. PubMed ID: 8897093 [TBL] [Abstract][Full Text] [Related]
64. Interaction of human apolipoprotein A-I with dipalmitoylphosphatidylcholine in vesicular and micellar complexes. Bae YS; Kim H J Biochem; 1989 Dec; 106(6):1019-25. PubMed ID: 2516855 [TBL] [Abstract][Full Text] [Related]
65. Comparisons of the interaction of propranolol and timolol with model and biological membrane systems. Herbette L; Katz AM; Sturtevant JM Mol Pharmacol; 1983 Sep; 24(2):259-69. PubMed ID: 6888369 [TBL] [Abstract][Full Text] [Related]
66. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202 [TBL] [Abstract][Full Text] [Related]
67. Interaction of alpha-lactalbumin with dimyristoylphosphatidylcholine vesicles. III. Influence of the temperature and of the lipid-to-protein molar ratio on the complex formation. Hanssens I; Herreman W; Van Ceunebroeck JC; Dangreau H; Gielens C; Preaux G; Van Cauwelaert F Biochim Biophys Acta; 1983 Mar; 728(3):293-304. PubMed ID: 6824658 [TBL] [Abstract][Full Text] [Related]
68. [Kinetics of dissociation of alpha-lactalbumin complexes with Ca2+ and Mg2+ ions]. Permiakov EA; Ostrovskiĭ AV; Kalinichenko LP Biofizika; 1988; 33(3):413-6. PubMed ID: 3167106 [TBL] [Abstract][Full Text] [Related]
69. Stabilization of apo α-lactalbumin by binding of epigallocatechin-3-gallate: Experimental and molecular dynamics study. Radibratovic M; Al-Hanish A; Minic S; Radomirovic M; Milcic M; Stanic-Vucinic D; Cirkovic Velickovic T Food Chem; 2019 Apr; 278():388-395. PubMed ID: 30583389 [TBL] [Abstract][Full Text] [Related]
70. The interaction of the molecular chaperone alpha-crystallin with unfolding alpha-lactalbumin: a structural and kinetic spectroscopic study. Carver JA; Lindner RA; Lyon C; Canet D; Hernandez H; Dobson CM; Redfield C J Mol Biol; 2002 May; 318(3):815-27. PubMed ID: 12054825 [TBL] [Abstract][Full Text] [Related]
71. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes. Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678 [TBL] [Abstract][Full Text] [Related]
72. Membrane interaction of erythroid spectrin: surface-density-dependent high-affinity binding to phosphatidylethanolamine. Ray S; Chakrabarti A Mol Membr Biol; 2004; 21(2):93-100. PubMed ID: 15204438 [TBL] [Abstract][Full Text] [Related]
73. The chaperone-like alpha-crystallin forms a complex only with the aggregation-prone molten globule state of alpha-lactalbumin. Rajaraman K; Raman B; Ramakrishna T; Rao CM Biochem Biophys Res Commun; 1998 Aug; 249(3):917-21. PubMed ID: 9731236 [TBL] [Abstract][Full Text] [Related]
74. Physiological roles of zinc and calcium binding to alpha-lactalbumin in lactose biosynthesis. Musci G; Berliner LJ Biochemistry; 1985 Nov; 24(24):6945-8. PubMed ID: 4074731 [TBL] [Abstract][Full Text] [Related]
75. Phase structures of binary lipid bilayers as revealed by permeability of small molecules. Xiang TX; Anderson BD Biochim Biophys Acta; 1998 Mar; 1370(1):64-76. PubMed ID: 9518554 [TBL] [Abstract][Full Text] [Related]
76. Spectroscopic studies of the tyrosine residues of human plasma apolipoprotein A-II. Massey JB; Pownall HJ Biochim Biophys Acta; 1989 Nov; 999(2):111-20. PubMed ID: 2512989 [TBL] [Abstract][Full Text] [Related]
77. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Ortiz A; Killian JA; Verkleij AJ; Wilschut J Biophys J; 1999 Oct; 77(4):2003-14. PubMed ID: 10512820 [TBL] [Abstract][Full Text] [Related]
78. Location and dynamics of anthracyclines bound to unilamellar phosphatidylcholine vesicles. Burke TG; Tritton TR Biochemistry; 1985 Oct; 24(21):5972-80. PubMed ID: 3866609 [TBL] [Abstract][Full Text] [Related]
79. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions. Mateo CR; Souto AA; Amat-Guerri F; Acuña AU Biophys J; 1996 Oct; 71(4):2177-91. PubMed ID: 8889194 [TBL] [Abstract][Full Text] [Related]
80. Mechanism of dissociation of human apolipoprotein A-I from complexes with dimyristoylphosphatidylcholine as studied by guanidine hydrochloride denaturation. Reijngoud DJ; Phillips MC Biochemistry; 1982 Jun; 21(12):2969-76. PubMed ID: 6809042 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]