BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36070448)

  • 1. Development of a mass spectrometry-based metabolomics workflow for traceability of wild and cultivated
    Ding B; Li H; Huang H; Xie J; Wang Z; Chen W; Tao Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Nov; 39(11):1773-1784. PubMed ID: 36070448
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of metabolism substances in Cordyceps sinensis and Cordyceps militaris cultivated with tussah pupa based on LC-MS.
    Liu Y; Xiao K; Wang Z; Wang S; Xu F
    J Food Biochem; 2021 Jun; 45(6):e13735. PubMed ID: 33890309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative metabolic profiling of wild
    Guo S; Lin M; Xie D; Zhang W; Zhang M; Zhou L; Li S; Hu H
    Front Pharmacol; 2022; 13():1036589. PubMed ID: 36506548
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy.
    Zhang J; Zhong X; Li S; Zhang G; Liu X
    J Pharm Biomed Anal; 2015 Nov; 115():395-401. PubMed ID: 26279370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomic variation in wild and cultured cordyceps and mycelia of Isaria cicadae.
    He Y; Zhang W; Peng F; Lu R; Zhou H; Bao G; Wang B; Huang B; Li Z; Hu F
    Biomed Chromatogr; 2019 Apr; 33(4):e4478. PubMed ID: 30578653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Arsenic Markers for Discriminating Wild and Cultivated
    Guo LX; Zhang GW; Li QQ; Xu XM; Wang JH
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30380635
    [No Abstract]   [Full Text] [Related]  

  • 7. GC-MS Profiling of Volatile Components in Different Fermentation Products of Cordyceps Sinensis Mycelia.
    Zhang H; Li Y; Mi J; Zhang M; Wang Y; Jiang Z; Hu P
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29064460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative profiling of sphingolipids in wild Cordyceps and its mycelia by using UHPLC-MS.
    Mi JN; Wang JR; Jiang ZH
    Sci Rep; 2016 Feb; 6():20870. PubMed ID: 26868933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative study on specific chromatograms and main nucleosides of cultivated and wild Cordyceps sinensis].
    Zan K; Huang LL; Guo LN; Liu J; Zheng J; Ma SC; Qian ZM; Li WJ
    Zhongguo Zhong Yao Za Zhi; 2017 Oct; 42(20):3957-3962. PubMed ID: 29243433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin traceability of Cordyceps sinensis based on trace elements and stable isotope fingerprints.
    Wang W; Bi Y; Ye J; Chen C; Bi X
    Sci Total Environ; 2024 Feb; 912():169591. PubMed ID: 38154647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycelium cultivation, chemical composition and antitumour activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis.
    Leung PH; Zhang QX; Wu JY
    J Appl Microbiol; 2006 Aug; 101(2):275-83. PubMed ID: 16882134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracing the geographical origin of endangered fungus Ophiocordyceps sinensis, especially from Nagqu, using UPLC-Q-TOF-MS.
    Wang F; Fan J; An Y; Meng G; Ji B; Li Y; Dong C
    Food Chem; 2024 May; 440():138247. PubMed ID: 38154283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis.
    Zhang X; Liu Q; Zhou W; Li P; Alolga RN; Qi LW; Yin X
    J Proteomics; 2018 Jun; 181():24-35. PubMed ID: 29609095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic comparison between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris.
    Chen L; Liu Y; Guo Q; Zheng Q; Zhang W
    Biomed Chromatogr; 2018 May; ():e4279. PubMed ID: 29752731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite profiling and antioxidant capacity of natural Ophiocordyceps gracilis and its cultures using LC-MS/MS-based metabolomics: Comparison with Ophiocordyceps sinensis.
    Wang Y; Tong L; Yang L; Ren B; Guo D
    Phytochem Anal; 2024 Mar; 35(2):308-320. PubMed ID: 37779226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated chemical characterization based on FT-NIR, GC-MS and LC-MS for the comparative metabolite profiling of wild and cultivated agarwood.
    Yao C; Qi L; Zhong F; Li N; Ma Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Jan; 1188():123056. PubMed ID: 34871920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling and identification of aqueous extract of Cordyceps sinensis by ultra-high performance liquid chromatography tandem quadrupole-orbitrap mass spectrometry.
    Yao CL; Qian ZM; Tian WS; Xu XQ; Yan Y; Shen Y; Lu SM; Li WJ; Guo DA
    Chin J Nat Med; 2019 Aug; 17(8):631-640. PubMed ID: 31472901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated metabolomics and transcriptomics reveal metabolites difference between wild and cultivated Ophiocordyceps sinensis.
    Zhang J; Wang N; Chen W; Zhang W; Zhang H; Yu H; Yi Y
    Food Res Int; 2023 Jan; 163():112275. PubMed ID: 36596185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stage- and Rearing-Dependent Metabolomics Profiling of
    Tang R; Qiu XH; Cao L; Long HL; Han RC
    Insects; 2021 Jul; 12(8):. PubMed ID: 34442232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of chemical markers in Cordyceps sinensis by HPLC-MS/MS.
    Hu H; Xiao L; Zheng B; Wei X; Ellis A; Liu YM
    Anal Bioanal Chem; 2015 Oct; 407(26):8059-66. PubMed ID: 26302964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.