BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 3607048)

  • 1. Comparison of the kinetics and thermodynamics of the carrier systems for glucose and leucine in human red blood cells.
    Walmsley AR; Lowe AG
    Biochim Biophys Acta; 1987 Jul; 901(2):229-38. PubMed ID: 3607048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetics of glucose transport in human red blood cells.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1986 May; 857(2):146-54. PubMed ID: 3707948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of the glucose carrier of erythrocytes with sodium tetrathionate: evidence for inward-facing and outward-facing carrier conformations.
    Krupka RM
    J Membr Biol; 1985; 84(1):35-43. PubMed ID: 4039759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single half-turnover of the glucose carrier of the human erythrocyte.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1987 Oct; 903(3):547-50. PubMed ID: 3663659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid kinetics of the glucose transporter from human erythrocytes. Detection and measurement of a half-turnover of the purified transporter.
    Appleman JR; Lienhard GE
    J Biol Chem; 1985 Apr; 260(8):4575-8. PubMed ID: 4039316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and thermodynamics of the binding of forskolin to the galactose-H+ transport protein, GalP, of Escherichia coli.
    Martin GE; Rutherford NG; Henderson PJ; Walmsley AR
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):261-8. PubMed ID: 7755573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism.
    Naftalin RJ
    Biochim Biophys Acta; 1988 Dec; 946(2):431-8. PubMed ID: 3207758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of internal forms of the choline carrier of erythrocytes with N-ethylmaleimide: evidence for a carrier conformational change on complex formation.
    Devés R; Krupka RM
    J Membr Biol; 1981; 63(1-2):99-103. PubMed ID: 7310854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity.
    Whitesell RR; Regen DM; Beth AH; Pelletier DK; Abumrad NA
    Biochemistry; 1989 Jun; 28(13):5618-25. PubMed ID: 2775725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a two-state mobile carrier mechanism in erythrocyte choline transport: effects of substrate analogs on inactivation of the carrier by N-ethylmaleimide.
    Devés R; Krupka RM
    J Membr Biol; 1981; 61(1):21-30. PubMed ID: 7265181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of maltose binding protein unfolding.
    Novokhatny V; Ingham K
    Protein Sci; 1997 Jan; 6(1):141-6. PubMed ID: 9007986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of choline transport in erythrocytes by n-alkanols.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1990 Nov; 1030(1):32-40. PubMed ID: 2265191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport.
    Wheeler TJ; Whelan JD
    Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The choline transport system of erythrocytes distribution of the free carrier in the membrane.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 Jul; 600(1):228-32. PubMed ID: 7397171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The affinities of benzodiazepines to the transport protein of glucose in human erythrocytes.
    Lacko L; Wittke B
    Arzneimittelforschung; 1984; 34(4):403-7. PubMed ID: 6540096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The temperature dependence of the transport of L-leucine in human erythrocytes.
    Hoare DG
    J Physiol; 1972 Mar; 221(2):331-48. PubMed ID: 5020981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of leucine transport in yeast by periplasmic binding proteins.
    Wainer SR; Boveris A; Ramos EH
    Arch Biochem Biophys; 1988 May; 262(2):481-90. PubMed ID: 3364977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonation of Glu(135) Facilitates the Outward-to-Inward Structural Transition of Fucose Transporter.
    Liu Y; Ke M; Gong H
    Biophys J; 2015 Aug; 109(3):542-51. PubMed ID: 26244736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins.
    Pérez A; Ojeda P; Ojeda L; Salas M; Rivas CI; Vera JC; Reyes AM
    Biochemistry; 2011 Oct; 50(41):8834-45. PubMed ID: 21899256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of sodium pentobarbital with D-glucose and L-sorbose transport in human red cells.
    Naftalin RJ; Arain M
    Biochim Biophys Acta; 1999 Jun; 1419(1):78-88. PubMed ID: 10366673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.