These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1. Matsui T; Ohki K Front Neural Circuits; 2013; 7():143. PubMed ID: 24068987 [TBL] [Abstract][Full Text] [Related]
7. Layer 3 Dynamically Coordinates Columnar Activity According to Spatial Context. Plomp G; Larderet I; Fiorini M; Busse L J Neurosci; 2019 Jan; 39(2):281-294. PubMed ID: 30459226 [TBL] [Abstract][Full Text] [Related]
8. Relationship between the local structure of orientation map and the strength of orientation tuning of neurons in monkey V1: a 2-photon calcium imaging study. Ikezoe K; Mori Y; Kitamura K; Tamura H; Fujita I J Neurosci; 2013 Oct; 33(42):16818-27. PubMed ID: 24133282 [TBL] [Abstract][Full Text] [Related]
9. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex. Salinas KJ; Figueroa Velez DX; Zeitoun JH; Kim H; Gandhi SP J Neurosci; 2017 Oct; 37(42):10125-10138. PubMed ID: 28924011 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization and spatial clustering of visual cortical neurons in the predatory grasshopper mouse Scholl B; Pattadkal JJ; Rowe A; Priebe NJ J Neurophysiol; 2017 Mar; 117(3):910-918. PubMed ID: 27927787 [TBL] [Abstract][Full Text] [Related]
11. Spatial-frequency tuning and geniculocortical projections in the visual cortex (areas 17 and 18) of the pigmented ferret. Baker GE; Thompson ID; Krug K; Smyth D; Tolhurst DJ Eur J Neurosci; 1998 Aug; 10(8):2657-68. PubMed ID: 9767395 [TBL] [Abstract][Full Text] [Related]
13. Mechanism underpinning the sharpening of orientation and spatial frequency selectivities in the tree shrew (Tupaia belangeri) primary visual cortex. Mohan YS; Viswanathan S; Jayakumar J; Lloyd EKJ; Vidyasagar TR Brain Struct Funct; 2022 May; 227(4):1265-1278. PubMed ID: 35118562 [TBL] [Abstract][Full Text] [Related]
14. Parallel pathways carrying direction-and orientation-selective retinal signals to layer 4 of the mouse visual cortex. Wang H; Dey O; Lagos WN; Behnam N; Callaway EM; Stafford BK Cell Rep; 2024 Mar; 43(3):113830. PubMed ID: 38386556 [TBL] [Abstract][Full Text] [Related]
15. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Tohmi M; Meguro R; Tsukano H; Hishida R; Shibuki K Curr Biol; 2014 Mar; 24(6):587-97. PubMed ID: 24583013 [TBL] [Abstract][Full Text] [Related]
16. Distinct recruitment of feedforward and recurrent pathways across higher-order areas of mouse visual cortex. Li JY; Hass CA; Matthews I; Kristl AC; Glickfeld LL Curr Biol; 2021 Nov; 31(22):5024-5036.e5. PubMed ID: 34637748 [TBL] [Abstract][Full Text] [Related]
17. Experience-Dependent Development of Feature-Selective Synchronization in the Primary Visual Cortex. Ishikawa AW; Komatsu Y; Yoshimura Y J Neurosci; 2018 Sep; 38(36):7852-7869. PubMed ID: 30064994 [TBL] [Abstract][Full Text] [Related]
18. Diversity of spatiotemporal coding reveals specialized visual processing streams in the mouse cortex. Han X; Vermaercke B; Bonin V Nat Commun; 2022 Jun; 13(1):3249. PubMed ID: 35668056 [TBL] [Abstract][Full Text] [Related]
19. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat. Ishikawa A; Shimegi S; Kida H; Sato H Eur J Neurosci; 2010 Jun; 31(11):2086-100. PubMed ID: 20604803 [TBL] [Abstract][Full Text] [Related]