These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36070671)

  • 1. Learning-based landmark detection in pelvis x-rays with attention mechanism: data from the osteoarthritis initiative.
    Pei Y; Mu L; Xu C; Li Q; Sen G; Sun B; Li X; Li X
    Biomed Phys Eng Express; 2023 Jan; 9(2):. PubMed ID: 36070671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misshapen Pelvis Landmark Detection With Local-Global Feature Learning for Diagnosing Developmental Dysplasia of the Hip.
    Liu C; Xie H; Zhang S; Mao Z; Sun J; Zhang Y
    IEEE Trans Med Imaging; 2020 Dec; 39(12):3944-3954. PubMed ID: 32746137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views.
    Bier B; Goldmann F; Zaech JN; Fotouhi J; Hegeman R; Grupp R; Armand M; Osgood G; Navab N; Maier A; Unberath M
    Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1463-1473. PubMed ID: 31006106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-input adaptive neural network for automatic detection of cervical vertebral landmarks on X-rays.
    Wang Y; Huang L; Wu M; Liu S; Jiao J; Bai T
    Comput Biol Med; 2022 Jul; 146():105576. PubMed ID: 35576823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated Assessment of Knee Alignment from Full-Leg X-Rays employing a "YOLOv4 And Resnet Landmark regression Algorithm" (YARLA): Data from the Osteoarthritis Initiative.
    Tack A; Preim B; Zachow S
    Comput Methods Programs Biomed; 2021 Jun; 205():106080. PubMed ID: 33892211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COVID-19 Detection from X-ray Images using Multi-Kernel-Size Spatial-Channel Attention Network.
    Fan Y; Liu J; Yao R; Yuan X
    Pattern Recognit; 2021 Nov; 119():108055. PubMed ID: 34103766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration.
    Grupp RB; Unberath M; Gao C; Hegeman RA; Murphy RJ; Alexander CP; Otake Y; McArthur BA; Armand M; Taylor RH
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):759-769. PubMed ID: 32333361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rib Fracture Detection with Dual-Attention Enhanced U-Net.
    Zhou Z; Fu Z; Jia J; Lv J
    Comput Math Methods Med; 2022; 2022():8945423. PubMed ID: 36035283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Part Affinity Fields and CoordConv for Detecting Landmarks of Lumbar Vertebrae and Sacrum in X-ray Images.
    An CH; Lee JS; Jang JS; Choi HC
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer learning from an artificial radiograph-landmark dataset for registration of the anatomic skull model to dual fluoroscopic X-ray images.
    Zhou C; Cha T; Peng Y; Li G
    Comput Biol Med; 2021 Nov; 138():104923. PubMed ID: 34638020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pose-Dependent Weights and Domain Randomization for Fully Automatic X-Ray to CT Registration.
    Grimm M; Esteban J; Unberath M; Navab N
    IEEE Trans Med Imaging; 2021 Sep; 40(9):2221-2232. PubMed ID: 33861701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collaborative regression-based anatomical landmark detection.
    Gao Y; Shen D
    Phys Med Biol; 2015 Dec; 60(24):9377-401. PubMed ID: 26579736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MPF-net: An effective framework for automated cobb angle estimation.
    Zhang K; Xu N; Guo C; Wu J
    Med Image Anal; 2022 Jan; 75():102277. PubMed ID: 34753020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The external obturator footprint as a landmark in total hip arthroplasty through a direct anterior approach: a CT-based analysis.
    RĂ¼diger HA; Fritz B; Impellizzeri FM; Leunig M; Pfirrmann CW; Sutter R
    Hip Int; 2019 Jan; 29(1):96-101. PubMed ID: 29783889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G
    Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Cascade-SEME network for COVID-19 detection in chest x-ray images.
    Lv D; Wang Y; Wang S; Zhang Q; Qi W; Li Y; Sun L
    Med Phys; 2021 May; 48(5):2337-2353. PubMed ID: 33778966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel denoising method for CT images based on U-net and multi-attention.
    Zhang J; Niu Y; Shangguan Z; Gong W; Cheng Y
    Comput Biol Med; 2023 Jan; 152():106387. PubMed ID: 36495750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utility of a novel integrated deep convolutional neural network for the segmentation of hip joint from computed tomography images in the preoperative planning of total hip arthroplasty.
    Wu D; Zhi X; Liu X; Zhang Y; Chai W
    J Orthop Surg Res; 2022 Mar; 17(1):164. PubMed ID: 35292056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis.
    Bayramoglu N; Nieminen MT; Saarakkala S
    Int J Med Inform; 2022 Jan; 157():104627. PubMed ID: 34773800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.