These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36070706)

  • 1. Core-shell bioprinting of vascularized
    Taymour R; Chicaiza-Cabezas NA; Gelinsky M; Lode A
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36070706
    [No Abstract]   [Full Text] [Related]  

  • 2. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs.
    Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of hepatocytes: core-shell structured co-cultures with fibroblasts for enhanced functionality.
    Taymour R; Kilian D; Ahlfeld T; Gelinsky M; Lode A
    Sci Rep; 2021 Mar; 11(1):5130. PubMed ID: 33664366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering.
    Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink.
    Wu Y; Wenger A; Golzar H; Tang XS
    Sci Rep; 2020 Nov; 10(1):20648. PubMed ID: 33244046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models.
    Shahabipour F; Tavafoghi M; Aninwene GE; Bonakdar S; Oskuee RK; Shokrgozar MA; Potyondy T; Alambeigi F; Ahadian S
    J Biomed Mater Res A; 2022 May; 110(5):1077-1089. PubMed ID: 35025130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catechol functionalized ink system and thrombin-free fibrin gel for fabricating cellular constructs with mechanical support and inner micro channels.
    Zhou Y; Fan Y; Chen Z; Yue Z; Wallace G
    Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34638119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondrogenesis in multi-layered mineralized constructs.
    Kilian D; Ahlfeld T; Akkineni AR; Bernhardt A; Gelinsky M; Lode A
    Sci Rep; 2020 May; 10(1):8277. PubMed ID: 32427838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents.
    Leucht A; Volz AC; Rogal J; Borchers K; Kluger PJ
    Sci Rep; 2020 Mar; 10(1):5330. PubMed ID: 32210309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a clay based bioink for 3D cell printing for skeletal application.
    Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M
    Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of a 3D Liver Model Comprising Human Extracellular Matrix in an Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for Infection and Transduction Studies.
    Hiller T; Berg J; Elomaa L; Röhrs V; Ullah I; Schaar K; Dietrich AC; Al-Zeer MA; Kurtz A; Hocke AC; Hippenstiel S; Fechner H; Weinhart M; Kurreck J
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30321994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs.
    Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT
    ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing of cell-laden microporous constructs using blended bioinks.
    Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K
    J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embedding Biomimetic Vascular Networks via Coaxial Sacrificial Writing into Functional Tissue.
    Stankey PP; Kroll KT; Ainscough AJ; Reynolds DS; Elamine A; Fichtenkort BT; Uzel SGM; Lewis JA
    Adv Mater; 2024 Sep; 36(36):e2401528. PubMed ID: 39092638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.