BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36070706)

  • 1. Core-shell bioprinting of vascularized
    Taymour R; Chicaiza-Cabezas NA; Gelinsky M; Lode A
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36070706
    [No Abstract]   [Full Text] [Related]  

  • 2. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs.
    Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of hepatocytes: core-shell structured co-cultures with fibroblasts for enhanced functionality.
    Taymour R; Kilian D; Ahlfeld T; Gelinsky M; Lode A
    Sci Rep; 2021 Mar; 11(1):5130. PubMed ID: 33664366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering.
    Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink.
    Wu Y; Wenger A; Golzar H; Tang XS
    Sci Rep; 2020 Nov; 10(1):20648. PubMed ID: 33244046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models.
    Shahabipour F; Tavafoghi M; Aninwene GE; Bonakdar S; Oskuee RK; Shokrgozar MA; Potyondy T; Alambeigi F; Ahadian S
    J Biomed Mater Res A; 2022 May; 110(5):1077-1089. PubMed ID: 35025130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catechol functionalized ink system and thrombin-free fibrin gel for fabricating cellular constructs with mechanical support and inner micro channels.
    Zhou Y; Fan Y; Chen Z; Yue Z; Wallace G
    Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34638119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondrogenesis in multi-layered mineralized constructs.
    Kilian D; Ahlfeld T; Akkineni AR; Bernhardt A; Gelinsky M; Lode A
    Sci Rep; 2020 May; 10(1):8277. PubMed ID: 32427838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents.
    Leucht A; Volz AC; Rogal J; Borchers K; Kluger PJ
    Sci Rep; 2020 Mar; 10(1):5330. PubMed ID: 32210309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a clay based bioink for 3D cell printing for skeletal application.
    Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M
    Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of a 3D Liver Model Comprising Human Extracellular Matrix in an Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for Infection and Transduction Studies.
    Hiller T; Berg J; Elomaa L; Röhrs V; Ullah I; Schaar K; Dietrich AC; Al-Zeer MA; Kurtz A; Hocke AC; Hippenstiel S; Fechner H; Weinhart M; Kurreck J
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30321994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs.
    Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT
    ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing of cell-laden microporous constructs using blended bioinks.
    Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K
    J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.