These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36070848)

  • 1. Recent developments in lactose blend formulations for carrier-based dry powder inhalation.
    Hebbink GA; Jaspers M; Peters HJW; Dickhoff BHJ
    Adv Drug Deliv Rev; 2022 Oct; 189():114527. PubMed ID: 36070848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations.
    Jetzer MW; Schneider M; Morrical BD; Imanidis G
    J Pharm Sci; 2018 Apr; 107(4):984-998. PubMed ID: 29247741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing on powder processing in dry powder inhalation product development, manufacturing and performance.
    Stegemann S; Faulhammer E; Pinto JT; Paudel A
    Int J Pharm; 2022 Feb; 614():121445. PubMed ID: 34998921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of dispersion enhancer selection in the development of novel tratinterol hydrochloride dry powder inhalation formulations.
    Liu T; Tong S; Liao Q; Pan L; Cheng M; Rantanen J; Cun D; Yang M
    Int J Pharm; 2023 Mar; 635():122702. PubMed ID: 36773729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry powders for oral inhalation free of lactose carrier particles.
    Healy AM; Amaro MI; Paluch KJ; Tajber L
    Adv Drug Deliv Rev; 2014 Aug; 75():32-52. PubMed ID: 24735676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical attributes of fine excipient materials in carrier-based dry powder inhalation formulations: The particle shape and surface properties.
    Elsayed MMA; Alfagih IM; Brockbank K; Aodah AH; Ali R; Almansour K; Shalash AO
    Int J Pharm; 2024 Apr; 655():123966. PubMed ID: 38452834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD
    J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of drug alone and carrier-based GLP-1 dry powder inhaler formulations.
    Babenko M; Alany RG; Calabrese G; Kaialy W; ElShaer A
    Int J Pharm; 2022 Apr; 617():121601. PubMed ID: 35181460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface energy considerations in ternary powder blends for inhalation.
    Bungert N; Kobler M; Scherließ R
    Int J Pharm; 2021 Nov; 609():121189. PubMed ID: 34662648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Role of Fine Excipient Materials in Carrier-Based Dry Powder Inhalation Mixtures: Effect on Deagglomeration of Drug Particles During Mixing Revealed.
    Shalash AO; Elsayed MMA
    AAPS PharmSciTech; 2017 Nov; 18(8):2862-2870. PubMed ID: 28421352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of the effect of added fines on the performance of dry powder inhalation formulations.
    Stankovic-Brandl M; Radivojev S; Sailer P; Penz FK; Paudel A
    Int J Pharm; 2022 Dec; 629():122359. PubMed ID: 36332830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical photothermal infrared spectroscopy for nanochemical analysis of pharmaceutical dry powder aerosols.
    Khanal D; Kim J; Zhang J; Ke WR; Holl MMB; Chan HK
    Int J Pharm; 2023 Feb; 632():122563. PubMed ID: 36586629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhalable lactose-based dry powder formulations of low molecular weight heparin.
    Bai S; Gupta V; Ahsan F
    J Aerosol Med Pulm Drug Deliv; 2010 Apr; 23(2):97-104. PubMed ID: 19778265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application and mechanism of inhalation profile improvement of DPI formulations by mechanofusion with magnesium stearate.
    Kumon M; Machida S; Suzuki M; Kusai A; Yonemochi E; Terada K
    Chem Pharm Bull (Tokyo); 2008 May; 56(5):617-25. PubMed ID: 18451547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of lactose fine size and drug shape on rheological properties and aerodynamic behavior of dry powders for inhalation.
    Sun Y; Yu D; Li J; Zhao J; Feng Y; Zhang X; Mao S
    Eur J Pharm Biopharm; 2022 Oct; 179():47-57. PubMed ID: 36029939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the potential of rheological measurements in development of dry powder inhalation formulations.
    Almansour K; Alfagih IM; Shalash AO; Brockbank K; Ali R; Freeman T; Elsayed MMA
    Int J Pharm; 2022 Feb; 614():121407. PubMed ID: 34942326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose.
    Pinto JT; Zellnitz S; Guidi T; Roblegg E; Paudel A
    Mol Pharm; 2018 Jul; 15(7):2827-2839. PubMed ID: 29856921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.
    Tan BMJ; Chan LW; Heng PWS
    Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations of high dose carrier based formulations.
    Yeung S; Traini D; Tweedie A; Lewis D; Church T; Young PM
    Int J Pharm; 2018 Jun; 544(1):141-152. PubMed ID: 29649519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of high shear blending on distribution of magnesium stearate on lactose for dry powder inhaled formulations.
    Welle A; Mehta M; Marek K; Peters H; van der Wel P; Imole O
    Int J Pharm; 2023 Nov; 647():123503. PubMed ID: 37827391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.