BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36071027)

  • 1. A Triple Therapeutic Strategy with Antiexosomal Iron Efflux for Enhanced Ferroptosis Therapy and Immunotherapy.
    Wang Y; Chen Q; Song H; Zhang Y; Chen H; Liu P; Sun T; Jiang C
    Small; 2022 Oct; 18(41):e2201704. PubMed ID: 36071027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototheranostic Metal-Phenolic Networks with Antiexosomal PD-L1 Enhanced Ferroptosis for Synergistic Immunotherapy.
    Xie L; Li J; Wang G; Sang W; Xu M; Li W; Yan J; Li B; Zhang Z; Zhao Q; Yuan Z; Fan Q; Dai Y
    J Am Chem Soc; 2022 Jan; 144(2):787-797. PubMed ID: 34985903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adipocyte-Derived Exosomal MTTP Suppresses Ferroptosis and Promotes Chemoresistance in Colorectal Cancer.
    Zhang Q; Deng T; Zhang H; Zuo D; Zhu Q; Bai M; Liu R; Ning T; Zhang L; Yu Z; Zhang H; Ba Y
    Adv Sci (Weinh); 2022 Oct; 9(28):e2203357. PubMed ID: 35978266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An iron oxyhydroxide-based nanosystem sensitizes ferroptosis by a "Three-Pronged" strategy in breast cancer stem cells.
    Wu K; Zhang W; Chen H; Wu J; Wang X; Yang X; Liang XJ; Zhang J; Liu D
    Acta Biomater; 2023 Apr; 160():281-296. PubMed ID: 36822484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonferrous Ferroptosis Inducer Manganese Molybdate Nanoparticles to Enhance Tumor Immunotherapy.
    Lei H; Li Q; Pei Z; Liu L; Yang N; Cheng L
    Small; 2023 Nov; 19(45):e2303438. PubMed ID: 37420331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen Self-Generating Nanoreactor Mediated Ferroptosis Activation and Immunotherapy in Triple-Negative Breast Cancer.
    Li K; Xu K; He Y; Yang Y; Tan M; Mao Y; Zou Y; Feng Q; Luo Z; Cai K
    ACS Nano; 2023 Mar; 17(5):4667-4687. PubMed ID: 36861638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidity-Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer.
    Song R; Li T; Ye J; Sun F; Hou B; Saeed M; Gao J; Wang Y; Zhu Q; Xu Z; Yu H
    Adv Mater; 2021 Aug; 33(31):e2101155. PubMed ID: 34170581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fe(III)-porphyrin-oxaliplatin(IV) nanoplatform for enhanced ferroptosis and combined therapy.
    Hu X; Li R; Wu W; Fang K; Zhu Z; Wang Y; Zhou L; Chen M; Dong C; Shi S
    J Control Release; 2022 Aug; 348():660-671. PubMed ID: 35716884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferroptosis is an effective strategy for cancer therapy.
    Khan A; Huo Y; Guo Y; Shi J; Hou Y
    Med Oncol; 2024 Apr; 41(5):124. PubMed ID: 38652406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The engineered exosomes targeting ferroptosis: A novel approach to reverse immune checkpoint inhibitors resistance.
    Chen A; Zhang W; Jiang C; Jiang Z; Tang D
    Int J Cancer; 2024 Jul; 155(1):7-18. PubMed ID: 38533694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible Polymer-Modified Nanoplatform for Ferroptosis-Enhanced Combination Cancer Therapy.
    He M; Dan Y; Chen M; Dong CM
    Macromol Biosci; 2023 Nov; 23(11):e2300215. PubMed ID: 37363952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy.
    Han W; Duan X; Ni K; Li Y; Chan C; Lin W
    Biomaterials; 2022 Jan; 280():121315. PubMed ID: 34920370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation.
    Chin YC; Yang LX; Hsu FT; Hsu CW; Chang TW; Chen HY; Chen LY; Chia ZC; Hung CH; Su WC; Chiu YC; Huang CC; Liao MY
    J Nanobiotechnology; 2022 Aug; 20(1):373. PubMed ID: 35953837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma.
    Wang S; Guo Q; Xu R; Lin P; Deng G; Xia X
    J Nanobiotechnology; 2023 Oct; 21(1):383. PubMed ID: 37858186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferroptosis and Cancer Immunotherapy.
    Yin J; Meng X; Peng L; Xie W; Liu X; He W; Li S
    Curr Mol Med; 2023; 23(5):401-409. PubMed ID: 35579155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the potential roles of ferroptosis in regulating tumor immunity and tumor immunotherapy.
    Gu X; Liu Y; Dai X; Yang YG; Zhang X
    Front Immunol; 2023; 14():1137107. PubMed ID: 36926345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop.
    Xiong H; Wang C; Wang Z; Lu H; Yao J
    J Control Release; 2021 Apr; 332():539-552. PubMed ID: 33689796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-based nanoscale coordination polymers synergistically induce immunogenic ferroptosis by blocking dihydrofolate reductase for cancer immunotherapy.
    Yu Y; Huang Z; Chen Q; Zhang Z; Jiang H; Gu R; Ding Y; Hu Y
    Biomaterials; 2022 Sep; 288():121724. PubMed ID: 36038420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research advances in the understanding of how exosomes regulate ferroptosis in cancer.
    Liu J
    Clin Transl Oncol; 2023 Jul; 25(7):1906-1915. PubMed ID: 36705798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor.
    Zhang K; Ma Z; Li S; Wu Y; Zhang J; Zhang W; Zhao Y; Han H
    Biomaterials; 2022 May; 284():121502. PubMed ID: 35390708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.