These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36071132)

  • 1. An innovative model for conductivity of graphene-based system by networked nano-sheets, interphase and tunneling zone.
    Zare Y; Rhee KY
    Sci Rep; 2022 Sep; 12(1):15179. PubMed ID: 36071132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressing of a power model for electrical conductivity of graphene-based composites.
    Zare Y; Rhee KY; Park SJ
    Sci Rep; 2023 Jan; 13(1):1596. PubMed ID: 36709238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancement of the Power-Law Model and Its Percolation Exponent for the Electrical Conductivity of a Graphene-Containing System as a Component in the Biosensing of Breast Cancer.
    Zare Y; Rhee KY; Park SJ
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Electrical Conductivity for Graphene-Filled Products Assuming Interphase, Tunneling Effect, and Filler Agglomeration Optimizing Breast Cancer Biosensors.
    Zare Y; Rhee KY
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of Percolation Threshold, Tunneling Distance, and Conductivity for Carbon Nanotube (CNT)-Reinforced Nanocomposites Assuming Effective CNT Concentration.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating of effective conductivity for grapheme-polymer nanocomposites.
    Vatani M; Zare Y; Gharib N; Rhee KY; Park SJ
    Sci Rep; 2023 Apr; 13(1):5907. PubMed ID: 37041268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of contact number among graphene nanosheets on the conductivities of tunnels and polymer composites.
    Zare Y; Kim TH; Gharib N; Chang YW
    Sci Rep; 2023 Jun; 13(1):9506. PubMed ID: 37308514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical and physical effects of nanofillers on percolation and electrical conductivity of polymer carbon-based nanocomposites: a general micro-mechanical model.
    Payandehpeyman J; Mazaheri M
    Soft Matter; 2023 Jan; 19(3):530-539. PubMed ID: 36541407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of contact resistance on the electrical conductivity of polymer graphene nanocomposites to optimize the biosensors detecting breast cancer cells.
    Zare Y; Rhee KY
    Sci Rep; 2022 Mar; 12(1):5406. PubMed ID: 35354877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of Electrical Conductivity for Polymer-Carbon Nanofiber Systems.
    Khalil Arjmandi S; Khademzadeh Yeganeh J; Zare Y; Rhee KY
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model Progress for Tensile Power of Polymer Nanocomposites Reinforced with Carbon Nanotubes by Percolating Interphase Zone and Network Aspects.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32370278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks.
    Liu Z; Peng W; Zare Y; Hui D; Rhee KY
    RSC Adv; 2018 May; 8(34):19001-19010. PubMed ID: 35539634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the Electrical Conductivity of Polymer Nanocomposites Assuming the Interphase Layer Surrounding Carbon Nanotubes.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32053949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Effects of the Interphase Region on the Network Properties in Polymer Carbon Nanotube Nanocomposites.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 32284499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting of tunneling resistivity between adjacent nanosheets in graphene-polymer systems.
    Zare Y; Gharib N; Nam DH; Chang YW
    Sci Rep; 2023 Aug; 13(1):12455. PubMed ID: 37528228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases.
    Zare Y; Rhee KY
    J Colloid Interface Sci; 2017 Nov; 506():283-290. PubMed ID: 28738279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile Modulus of Polymer Halloysite Nanotube Systems Containing Filler-Interphase Networks for Biomedical Requests.
    Zare Y; Rhee KY; Park SJ
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet.
    Jang JU; Nam HE; So SO; Lee H; Kim GS; Kim SY; Kim SH
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Graphene-Polyimide Nanocomposites with Superior Electrical Conductivity.
    Yoonessi M; Gaier JR; Sahimi M; Daulton TL; Kaner RB; Meador MA
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43230-43238. PubMed ID: 29168637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites.
    Zare Y; Rhee KY
    RSC Adv; 2019 Dec; 10(1):424-433. PubMed ID: 35492511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.