BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36071176)

  • 1. Evaluating a therapeutic window for precision medicine by integrating genomic profiles and p53 network dynamics.
    Choi M; Park SM; Cho KH
    Commun Biol; 2022 Sep; 5(1):924. PubMed ID: 36071176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network dynamics-based cancer panel stratification for systemic prediction of anticancer drug response.
    Choi M; Shi J; Zhu Y; Yang R; Cho KH
    Nat Commun; 2017 Dec; 8(1):1940. PubMed ID: 29208897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic analysis of genotype-specific drug responses in cancer.
    Kim N; He N; Kim C; Zhang F; Lu Y; Yu Q; Stemke-Hale K; Greshock J; Wooster R; Yoon S; Mills GB
    Int J Cancer; 2012 Nov; 131(10):2456-64. PubMed ID: 22422301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association analysis of the perturbation of interactions in biological pathways and anticancer drug activity.
    Lee J; Lee D
    Biochem Biophys Res Commun; 2016 Jan; 470(1):137-143. PubMed ID: 26772881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine.
    Zhu Z; Ihle NT; Rejto PA; Zarrinkar PP
    BMC Genomics; 2016 Jun; 17():455. PubMed ID: 27296290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage.
    Choi M; Shi J; Jung SH; Chen X; Cho KH
    Sci Signal; 2012 Nov; 5(251):ra83. PubMed ID: 23169817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal drug prediction from personal genomics profiles.
    Sheng J; Li F; Wong ST
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell analysis of p53 transitional dynamics unravels stimulus- and cell type-dependent signaling output motifs.
    Xie J; Zhang L; Liu B; Liang X; Shi J
    BMC Biol; 2022 Apr; 20(1):85. PubMed ID: 35410287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal diversification of intrapatient genomic clones and early drug development concepts realize the roadmap of precision cancer medicine.
    Roukos DH
    Drug Discov Today; 2017 Aug; 22(8):1148-1164. PubMed ID: 28400153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DrugComboRanker: drug combination discovery based on target network analysis.
    Huang L; Li F; Sheng J; Xia X; Ma J; Zhan M; Wong ST
    Bioinformatics; 2014 Jun; 30(12):i228-36. PubMed ID: 24931988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
    Verkhivker GM
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):210-225. PubMed ID: 30339916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning.
    Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y
    Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated clinical and genomic information system for cancer precision medicine.
    Jang Y; Choi T; Kim J; Park J; Seo J; Kim S; Kwon Y; Lee S; Lee S
    BMC Med Genomics; 2018 Apr; 11(Suppl 2):34. PubMed ID: 29697362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering.
    Joo JI; Choi M; Jang SH; Choi S; Park SM; Shin D; Cho KH
    Adv Mater; 2020 Sep; 32(35):e1906783. PubMed ID: 32253807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integral genomic signature approach for tailored cancer therapy using genome-wide sequencing data.
    Wang XS; Lee S; Zhang H; Tang G; Wang Y
    Nat Commun; 2022 May; 13(1):2936. PubMed ID: 35618721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress and challenges in understanding the regulation and function of p53 dynamics.
    Yang Z; Hanson RL; Batchelor E
    Biochem Soc Trans; 2021 Nov; 49(5):2123-2131. PubMed ID: 34495325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex regulation of autophagy in cancer - integrated approaches to discover the networks that hold a double-edged sword.
    Kubisch J; Türei D; Földvári-Nagy L; Dunai ZA; Zsákai L; Varga M; Vellai T; Csermely P; Korcsmáros T
    Semin Cancer Biol; 2013 Aug; 23(4):252-61. PubMed ID: 23810837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.