These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 36071192)

  • 21. Surface tension measurement and calculation of model biomolecular condensates.
    Holland J; Castrejón-Pita AA; Tuinier R; Aarts DGAL; Nott TJ
    Soft Matter; 2023 Nov; 19(45):8706-8716. PubMed ID: 37791635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomolecular Condensates in Contact with Membranes.
    Mangiarotti A; Dimova R
    Annu Rev Biophys; 2024 Jul; 53(1):319-341. PubMed ID: 38360555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The regulation of liquid-liquid phase separated condensates containing nucleic acids.
    Dai Z; Yang X
    FEBS J; 2024 Jun; 291(11):2320-2331. PubMed ID: 37735903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in design and application of synthetic membraneless organelles.
    Wan L; Zhu Y; Zhang W; Mu W
    Biotechnol Adv; 2024; 73():108355. PubMed ID: 38588907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress-related biomolecular condensates in plants.
    Solis-Miranda J; Chodasiewicz M; Skirycz A; Fernie AR; Moschou PN; Bozhkov PV; Gutierrez-Beltran E
    Plant Cell; 2023 Sep; 35(9):3187-3204. PubMed ID: 37162152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiphase organization is a second phase transition within multi-component biomolecular condensates.
    Mazarakos K; Zhou HX
    J Chem Phys; 2022 May; 156(19):191104. PubMed ID: 35597639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
    Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ
    Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid-liquid Phase Separation in Viral Function.
    Zhang X; Zheng R; Li Z; Ma J
    J Mol Biol; 2023 Aug; 435(16):167955. PubMed ID: 36642156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological Phase Separation and Biomolecular Condensates in Plants.
    Emenecker RJ; Holehouse AS; Strader LC
    Annu Rev Plant Biol; 2021 Jun; 72():17-46. PubMed ID: 33684296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales.
    Polyansky AA; Gallego LD; Efremov RG; Köhler A; Zagrovic B
    Elife; 2023 Jul; 12():. PubMed ID: 37470705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A platform to induce and mature biomolecular condensates using chemicals and light.
    Hernandez-Candia CN; Brady BR; Harrison E; Tucker CL
    Nat Chem Biol; 2024 Apr; 20(4):452-462. PubMed ID: 38191942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological Liquid-Liquid Phase Separation, Biomolecular Condensates, and Membraneless Organelles: Now You See Me, Now You Don't.
    Uversky VN
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G-Quadruplexes in Nuclear Biomolecular Condensates.
    Pavlova I; Iudin M; Surdina A; Severov V; Varizhuk A
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different states and the associated fates of biomolecular condensates.
    Ranganathan S; Liu J; Shakhnovich E
    Essays Biochem; 2022 Dec; 66(7):849-862. PubMed ID: 36350032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein phase separation and its role in chromatin organization and diseases.
    Li J; Zhang Y; Chen X; Ma L; Li P; Yu H
    Biomed Pharmacother; 2021 Jun; 138():111520. PubMed ID: 33765580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput and proteome-wide discovery of endogenous biomolecular condensates.
    Li P; Chen P; Qi F; Shi J; Zhu W; Li J; Zhang P; Xie H; Li L; Lei M; Ren X; Wang W; Zhang L; Xiang X; Zhang Y; Gao Z; Feng X; Du W; Liu X; Xia L; Liu BF; Li Y
    Nat Chem; 2024 Jul; 16(7):1101-1112. PubMed ID: 38499848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.