BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36071210)

  • 1. Benefits of active listening during 3D sound localization.
    Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F
    Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Hearing Difficulties in Reaching Space in Bilateral Cochlear Implant Children Improve With Head Movements.
    Coudert A; Gaveau V; Gatel J; Verdelet G; Salemme R; Farne A; Pavani F; Truy E
    Ear Hear; 2022; 43(1):192-205. PubMed ID: 34225320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching to Sounds Improves Spatial Hearing in Bilateral Cochlear Implant Users.
    Valzolgher C; Gatel J; Bouzaid S; Grenouillet S; Todeschini M; Verdelet G; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    Ear Hear; 2023 Jan-Feb 01; 44(1):189-198. PubMed ID: 35982520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial hearing training in virtual reality with simulated asymmetric hearing loss.
    Valzolgher C; Capra S; Sum K; Finos L; Pavani F; Picinali L
    Sci Rep; 2024 Jan; 14(1):2469. PubMed ID: 38291126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of head position on the spatial representation of acoustic targets.
    Goossens HH; van Opstal AJ
    J Neurophysiol; 1999 Jun; 81(6):2720-36. PubMed ID: 10368392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapting to altered auditory cues: Generalization from manual reaching to head pointing.
    Valzolgher C; Todeschini M; Verdelet G; Gatel J; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    PLoS One; 2022; 17(4):e0263509. PubMed ID: 35421095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Adaptation in Azimuth and Elevation to Acute Monaural Spatial Hearing after Training with Visual Feedback.
    Zonooz B; Van Opstal AJ
    eNeuro; 2019; 6(6):. PubMed ID: 31601632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Sided Deafness Cochlear Implant Sound-Localization Behavior With Multiple Concurrent Sources.
    Bernstein JGW; Phatak SA; Schuchman GI; Stakhovskaya OA; Rivera AL; Brungart DS
    Ear Hear; 2022; 43(1):206-219. PubMed ID: 34320529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Head and Eye Movements Reveal Compensatory Strategies for Acute Binaural Deficits During Sound Localization.
    Alemu RZ; Papsin BC; Harrison RV; Blakeman A; Gordon KA
    Trends Hear; 2024; 28():23312165231217910. PubMed ID: 38297817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous head-movements improve sound localization in aging adults with hearing loss.
    Gessa E; Giovanelli E; Spinella D; Verdelet G; Farnè A; Frau GN; Pavani F; Valzolgher C
    Front Hum Neurosci; 2022; 16():1026056. PubMed ID: 36310849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound Localization in Real-Time Vocoded Cochlear-Implant Simulations With Normal-Hearing Listeners.
    Ausili SA; Backus B; Agterberg MJH; van Opstal AJ; van Wanrooij MM
    Trends Hear; 2019; 23():2331216519847332. PubMed ID: 31088265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training spatial hearing in unilateral cochlear implant users through reaching to sounds in virtual reality.
    Valzolgher C; Bouzaid S; Grenouillet S; Gatel J; Ratenet L; Murenu F; Verdelet G; Salemme R; Gaveau V; Coudert A; Hermann R; Truy E; Farnè A; Pavani F
    Eur Arch Otorhinolaryngol; 2023 Aug; 280(8):3661-3672. PubMed ID: 36905419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between postural stability and spatial hearing.
    Zhong X; Yost WA
    J Am Acad Audiol; 2013 Oct; 24(9):782-8. PubMed ID: 24224986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process.
    Yost WA; Zhong X; Najam A
    J Acoust Soc Am; 2015 Nov; 138(5):3293-310. PubMed ID: 26627802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound localization under perturbed binaural hearing.
    Van Wanrooij MM; Van Opstal AJ
    J Neurophysiol; 2007 Jan; 97(1):715-26. PubMed ID: 17065242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous head movements support accurate horizontal auditory localization in a virtual visual environment.
    Gulli A; Fontana F; Orzan E; Aruffo A; Muzzi E
    PLoS One; 2022; 17(12):e0278705. PubMed ID: 36473012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Sound localization cues of binaural hearing].
    Paulus E
    Laryngorhinootologie; 2003 Apr; 82(4):240-8. PubMed ID: 12717598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Updating spatial hearing abilities through multisensory and motor cues.
    Valzolgher C; Campus C; Rabini G; Gori M; Pavani F
    Cognition; 2020 Nov; 204():104409. PubMed ID: 32717425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.