These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 36071299)

  • 1. Addressing artifacts of colorimetric anticancer assays for plant-based drug development.
    Batool S; Javaid S; Javed H; Laiba Asim ; Shahid I; Khan M; Muhammad A
    Med Oncol; 2022 Sep; 39(12):198. PubMed ID: 36071299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of using MTT and XTT in colorimetric assays for quantitating bovine neutrophil bactericidal activity.
    Stevens MG; Olsen SC
    J Immunol Methods; 1993 Jan; 157(1-2):225-31. PubMed ID: 8423367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticancer Drug Development: The Way Forward.
    Connors T
    Oncologist; 1996; 1(3):180-181. PubMed ID: 10387985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interference by anti-cancer chemotherapeutic agents in the MTT-tumor chemosensitivity assay.
    Ulukaya E; Colakogullari M; Wood EJ
    Chemotherapy; 2004 Apr; 50(1):43-50. PubMed ID: 15084806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.
    Ali I; Lone MN; Al-Othman ZA; Al-Warthan A; Sanagi MM
    Curr Drug Targets; 2015; 16(7):711-34. PubMed ID: 25751009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two rapid colorimetric methods for determining resistance of mycobacterium tuberculosis to rifampin, isoniazid, and streptomycin in liquid medium.
    De Logu A; Uda P; Pellerano ML; Pusceddu MC; Saddi B; Schivo ML
    Eur J Clin Microbiol Infect Dis; 2001 Jan; 20(1):33-9. PubMed ID: 11245320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Development of Sulfonyl or Sulfonamide Hybrids as Potential Anticancer Agents: A Key Review.
    Rakesh KP; Wang SM; Leng J; Ravindar L; Asiri AM; Marwani HM; Qin HL
    Anticancer Agents Med Chem; 2018; 18(4):488-505. PubMed ID: 29110622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochemicals in Anticancer Drug Development.
    Dutt R; Garg V; Khatri N; Madan AK
    Anticancer Agents Med Chem; 2019; 19(2):172-183. PubMed ID: 30398123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coumarin-containing hybrids and their anticancer activities.
    Zhang L; Xu Z
    Eur J Med Chem; 2019 Nov; 181():111587. PubMed ID: 31404864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors.
    Dallavalle S; Dobričić V; Lazzarato L; Gazzano E; Machuqueiro M; Pajeva I; Tsakovska I; Zidar N; Fruttero R
    Drug Resist Updat; 2020 May; 50():100682. PubMed ID: 32087558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1,2,3-Triazole hybrids as anticancer agents: A review.
    Alam MM
    Arch Pharm (Weinheim); 2022 Jan; 355(1):e2100158. PubMed ID: 34559414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS.
    Goodwin CJ; Holt SJ; Downes S; Marshall NJ
    J Immunol Methods; 1995 Feb; 179(1):95-103. PubMed ID: 7868929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.
    Gali-Muhtasib H; Hmadi R; Kareh M; Tohme R; Darwiche N
    Apoptosis; 2015 Dec; 20(12):1531-62. PubMed ID: 26362468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Lactone Derivatives and Their Anticancer Activities: A Short Review.
    Wang J; Shi Y; Jiang D
    Curr Top Med Chem; 2021; 21(18):1645-1656. PubMed ID: 33797384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screen anticancer drug in vitro using resonance light scattering technique.
    Chen Z; Liu G; Chen M; Xu B; Peng Y; Chen M; Wu M
    Talanta; 2009 Feb; 77(4):1365-9. PubMed ID: 19084650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress on anticancer candidates in patents of herbal medicinal products.
    Feng Y; Wang N; Zhu M; Feng Y; Li H; Tsao S
    Recent Pat Food Nutr Agric; 2011 Jan; 3(1):30-48. PubMed ID: 21114469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticancer activities, structure-activity relationship, and mechanism of action of 12-, 14-, and 16-membered macrolactones.
    Wang R
    Arch Pharm (Weinheim); 2021 Sep; 354(9):e2100025. PubMed ID: 34138486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine-derived drugs: Recent advances in cancer therapy and immune signaling.
    Saeed AFUH; Su J; Ouyang S
    Biomed Pharmacother; 2021 Feb; 134():111091. PubMed ID: 33341044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.